PINN解偏微分方程实例3(Allen-Cahn方程)
创始人
2024-06-03 09:12:50
0

PINN解偏微分方程实例3之Allen-Cahn方程

  • 1. Allen-Cahn方程
  • 2. 损失函数如下定义
  • 3. 代码
  • 4. 实验细节及复现结果
  • 参考资料

1. Allen-Cahn方程

   考虑偏微分方程如下:
ut−0.0001uxx+5u3−5u=0u(0,x)=x2cos(πx)u(t,−1)=u(t,1)ux(t,−1)=ux(t,1)\begin{align} \begin{aligned} & u_t - 0.0001u_{xx} + 5u^3 -5u = 0 \\ & u(0,x) = x^2cos(\pi x) \\ & u(t,-1) = u(t,1) \\ & u_x(t,-1) = u_x(t,1) \end{aligned} \end{align} ​ut​−0.0001uxx​+5u3−5u=0u(0,x)=x2cos(πx)u(t,−1)=u(t,1)ux​(t,−1)=ux​(t,1)​​​
其中x∈[−1,1],t∈[0,1].x\in[-1,1],t\in[0,1].x∈[−1,1],t∈[0,1].这是一个带有周期性边界条件,初始条件的偏微分方程。这个方程主要用PINN[1]PINN^{[1]}PINN[1]论文中正向问题的离散时间模型求解。

2. 损失函数如下定义

SSE=SSEn+SSEb\begin{align} \begin{aligned} SSE = SSE_n + SSE_b \\ \end{aligned} \end{align} SSE=SSEn​+SSEb​​​​
其中
SSEn=∑j=1q+1∑i=1Nn∣ujn(xn,i)−un,i∣2SSEb=∑i=1q∣un+ci(−1)−un+ci(1)∣2+∣un+1(−1)−un+1(1)∣2+∑i=1q∣uxn+ci(−1)−uxn+ci(1)∣2+∣uxn+1(−1)−uxn+1(1)∣2\begin{align} \begin{aligned} SSE_n &= \sum_{j=1}^{q+1}\sum_{i=1}^{N_n}|u_j^{n}(x^{n,i})-u^{n,i}|^2 \\ SSE_b &= \sum_{i=1}^{q} |u^{n+c_i}(-1)-u^{n+c_i}(1)|^2+ |u^{n+1}(-1)-u^{n+1}(1)|^2 \\ &+\sum_{i=1}^{q} |u_x^{n+c_i}(-1)-u_x^{n+c_i}(1)|^2+ |u_x^{n+1}(-1)-u_x^{n+1}(1)|^2 \\ \end{aligned} \end{align} SSEn​SSEb​​=j=1∑q+1​i=1∑Nn​​∣ujn​(xn,i)−un,i∣2=i=1∑q​∣un+ci​(−1)−un+ci​(1)∣2+∣un+1(−1)−un+1(1)∣2+i=1∑q​∣uxn+ci​​(−1)−uxn+ci​​(1)∣2+∣uxn+1​(−1)−uxn+1​(1)∣2​​​
这里SSEbSSE_bSSEb​是周期性边界损失,SSEnSSE_nSSEn​可以理解为PDE损失,{xn,i,un,i}∣i=1Nn\{x^{n,i},u^{n,i}\}|_{i=1}^{N_n}{xn,i,un,i}∣i=1Nn​​为tnt^ntn时刻相应的数据点和真解。ujn(xn,i)u_j^{n}(x^{n,i})ujn​(xn,i)利用公式(4)、(5)计算得到。
un+ci=un−Δt∑j=1qaijN[un+cj],i=1,2,...,qun+1=un−Δt∑j=1qbjN[un+cj].\begin{align} \begin{aligned} u^{n+c_i} &= u^n - \Delta t \sum_{j=1}^q a_{ij} \mathcal{N}[u^{n+c_j}], \quad i=1,2,...,q \\ u^{n+1} &= u^n - \Delta t \sum_{j=1}^q b_{j} \mathcal{N}[u^{n+c_j}]. \end{aligned} \end{align} un+ci​un+1​=un−Δtj=1∑q​aij​N[un+cj​],i=1,2,...,q=un−Δtj=1∑q​bj​N[un+cj​].​​​
公式(4)中N[un+cj]\mathcal{N}[u^{n+c_j}]N[un+cj​]表达式如公式(5)所示。
N[un+cj]=−0.0001uxxn+cj+5(un+cj)3−5un+cj\begin{align} \begin{aligned} \mathcal{N}[u^{n+c_j}] = -0.0001u_{xx}^{n+c_j} + 5(u^{n+c_j})^3 - 5u^{n+c_j} \end{aligned} \end{align} N[un+cj​]=−0.0001uxxn+cj​​+5(un+cj​)3−5un+cj​​​​
   这里Nn=200,q=100,Δt=0.8N_n=200,q=100,\Delta t=0.8Nn​=200,q=100,Δt=0.8。神经网络模型输入层包括一个神经元,四个100神经元的隐藏层,101个神经元的输出层。

3. 代码

  代码参考https://github.com/maziarraissi/PINNs,原代码运行框架tensorflow1,这里将其改为tensorflow2上运行,代码如下:

"""
@author: Maziar Raissi
@Annotator:ST
计算t*x为[0,1]*[-1,1]区域上的真解,真解个数t*x为201*256
"""import sys
sys.path.insert(0, '../../Utilities/')import tensorflow.compat.v1 as tf   # tensorflow1.0代码迁移到2.0上运行,加上这两行
tf.disable_v2_behavior()# import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import time
import scipy.io
from plotting import newfig, savefig
import matplotlib.gridspec as gridspec
from mpl_toolkits.axes_grid1 import make_axes_locatablenp.random.seed(1234)
tf.set_random_seed(1234)class PhysicsInformedNN:# Initialize the classdef __init__(self, x0, u0, x1, layers, dt, lb, ub, q):"""input: 200个t=0.1时x坐标,x=-1,1 输入202个样本output: 每个坐标输出这个坐标在未来q个时间的解和t+dt时刻的解,输出维度分别为(200*101)(2*101):param x0: 空间选定的200个点的x坐标值:param u0: 200个x在t=0.1时对应的u的精确解:param x1: 空间边界[[-1],[1]]:param layers: 神经网络各层神经元列表:param dt: 时间步长 0.8:param lb: -1:param ub: 1:param q: q阶龙格库达,即t方向取q个点的斜率的加权平均作为龙格库达法的平均斜率"""self.lb = lbself.ub = ubself.x0 = x0self.x1 = x1self.u0 = u0self.layers = layersself.dt = dtself.q = max(q,1)# Initialize NNself.weights, self.biases = self.initialize_NN(layers)# Load IRK weightstmp = np.float32(np.loadtxt('../../Utilities/IRK_weights/Butcher_IRK%d.txt' % (q), ndmin = 2))self.IRK_weights = np.reshape(tmp[0:q**2+q], (q+1,q))self.IRK_times = tmp[q**2+q:]# tf placeholders and graphself.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True,log_device_placement=True))self.x0_tf = tf.placeholder(tf.float32, shape=(None, self.x0.shape[1]))self.x1_tf = tf.placeholder(tf.float32, shape=(None, self.x1.shape[1]))self.u0_tf = tf.placeholder(tf.float32, shape=(None, self.u0.shape[1]))self.dummy_x0_tf = tf.placeholder(tf.float32, shape=(None, self.q)) # dummy variable for fwd_gradientsself.dummy_x1_tf = tf.placeholder(tf.float32, shape=(None, self.q+1)) # dummy variable for fwd_gradientsself.U0_pred = self.net_U0(self.x0_tf) # N(200) x (q+1)  200个x内部点输入网络训练self.U1_pred, self.U1_x_pred= self.net_U1(self.x1_tf) # N1(=2) x (q+1)  x=-1,1 输入网络得到边界# self.U1_pred (2*101) 分别对应x=-1,1时的预测的dt内q个真解和一个u^{n+1}时的真解self.loss = tf.reduce_sum(tf.square(self.u0_tf - self.U0_pred)) + \tf.reduce_sum(tf.square(self.U1_pred[0,:] - self.U1_pred[1,:])) + \tf.reduce_sum(tf.square(self.U1_x_pred[0,:] - self.U1_x_pred[1,:]))                     # self.optimizer = tf.contrib.opt.ScipyOptimizerInterface(self.loss,#                                                         method = 'L-BFGS-B',#                                                         options = {'maxiter': 50000,#                                                                    'maxfun': 50000,#                                                                    'maxcor': 50,#                                                                    'maxls': 50,#                                                                    'ftol' : 1.0 * np.finfo(float).eps})self.optimizer_Adam = tf.train.AdamOptimizer()self.train_op_Adam = self.optimizer_Adam.minimize(self.loss)init = tf.global_variables_initializer()self.sess.run(init)def initialize_NN(self, layers):        weights = []biases = []num_layers = len(layers) for l in range(0,num_layers-1):W = self.xavier_init(size=[layers[l], layers[l+1]])b = tf.Variable(tf.zeros([1,layers[l+1]], dtype=tf.float32), dtype=tf.float32)weights.append(W)biases.append(b)        return weights, biasesdef xavier_init(self, size):in_dim = size[0]out_dim = size[1]        xavier_stddev = np.sqrt(2/(in_dim + out_dim))return tf.Variable(tf.truncated_normal([in_dim, out_dim], stddev=xavier_stddev), dtype=tf.float32)def neural_net(self, X, weights, biases):num_layers = len(weights) + 1H = 2.0*(X - self.lb)/(self.ub - self.lb) - 1.0for l in range(0,num_layers-2):W = weights[l]b = biases[l]H = tf.tanh(tf.add(tf.matmul(H, W), b))W = weights[-1]b = biases[-1]Y = tf.add(tf.matmul(H, W), b)return Ydef fwd_gradients_0(self, U, x):        g = tf.gradients(U, x, grad_ys=self.dummy_x0_tf)[0]return tf.gradients(g, self.dummy_x0_tf)[0]def fwd_gradients_1(self, U, x):        g = tf.gradients(U, x, grad_ys=self.dummy_x1_tf)[0]return tf.gradients(g, self.dummy_x1_tf)[0]def net_U0(self, x):U1 = self.neural_net(x, self.weights, self.biases)U = U1[:,:-1]U_x = self.fwd_gradients_0(U, x)U_xx = self.fwd_gradients_0(U_x, x)F = 5.0*U - 5.0*U**3 + 0.0001*U_xxU0 = U1 - self.dt*tf.matmul(F, self.IRK_weights.T)    # IRK_weights(101*100)  包括了Runde-Kutta方法参数a,breturn U0def net_U1(self, x):U1 = self.neural_net(x, self.weights, self.biases)U1_x = self.fwd_gradients_1(U1, x)return U1, U1_x # N x (q+1)def callback(self, loss):print('Loss:', loss)def train(self, nIter):tf_dict = {self.x0_tf: self.x0, self.u0_tf: self.u0, self.x1_tf: self.x1,self.dummy_x0_tf: np.ones((self.x0.shape[0], self.q)),self.dummy_x1_tf: np.ones((self.x1.shape[0], self.q+1))}start_time = time.time()for it in range(nIter):self.sess.run(self.train_op_Adam, tf_dict)# Printif it % 10 == 0:elapsed = time.time() - start_timeloss_value = self.sess.run(self.loss, tf_dict)print('It: %d, Loss: %.3e, Time: %.2f' % (it, loss_value, elapsed))start_time = time.time()# self.optimizer.minimize(self.sess,#                         feed_dict = tf_dict,#                         fetches = [self.loss],#                         loss_callback = self.callback)def predict(self, x_star):U1_star = self.sess.run(self.U1_pred, {self.x1_tf: x_star})return U1_starif __name__ == "__main__": q = 100layers = [1, 200, 200, 200, 200, q+1]lb = np.array([-1.0])ub = np.array([1.0])N = 200data = scipy.io.loadmat('../Data/AC.mat')t = data['tt'].flatten()[:,None]  # T(201) x 1  精确解时间坐标节点x = data['x'].flatten()[:,None]  # N(512) x 1  精确解空间坐标节点Exact = np.real(data['uu']).T  # T x N 精确解idx_t0 = 20idx_t1 = 180dt = t[idx_t1] - t[idx_t0]    # 时间步长0.8# Initial datanoise_u0 = 0.0idx_x = np.random.choice(Exact.shape[1], N, replace=False)    # 随机选择空间200个点的下标索引x0 = x[idx_x,:]    # 空间200个点的x坐标值u0 = Exact[idx_t0:idx_t0+1,idx_x].T    # t=0.10时200个精确解u0 = u0 + noise_u0*np.std(u0)*np.random.randn(u0.shape[0], u0.shape[1])# Boudanry datax1 = np.vstack((lb,ub))# Test datax_star = xmodel = PhysicsInformedNN(x0, u0, x1, layers, dt, lb, ub, q)model.train(2)    # 10000U1_pred = model.predict(x_star)    # (512,101)error = np.linalg.norm(U1_pred[:,-1] - Exact[idx_t1,:], 2)/np.linalg.norm(Exact[idx_t1,:], 2)print('Error: %e' % (error))  # sqrt(sum_{i=1}^512 (u-u_{ext})) / sqrt(sum_{i=1}^512 (u_{ext}))  相对误差################################################################################################### Plotting #####################################################################################################    fig, ax = newfig(1.0, 1.2)ax.axis('off')####### Row 0: h(t,x) ##################    gs0 = gridspec.GridSpec(1, 2)gs0.update(top=1-0.06, bottom=1-1/2 + 0.1, left=0.15, right=0.85, wspace=0)ax = plt.subplot(gs0[:, :])h = ax.imshow(Exact.T, interpolation='nearest', cmap='seismic', extent=[t.min(), t.max(), x_star.min(), x_star.max()], origin='lower', aspect='auto')divider = make_axes_locatable(ax)cax = divider.append_axes("right", size="5%", pad=0.05)fig.colorbar(h, cax=cax)line = np.linspace(x.min(), x.max(), 2)[:,None]ax.plot(t[idx_t0]*np.ones((2,1)), line, 'w-', linewidth = 1)ax.plot(t[idx_t1]*np.ones((2,1)), line, 'w-', linewidth = 1)ax.set_xlabel('$t$')ax.set_ylabel('$x$')leg = ax.legend(frameon=False, loc = 'best')ax.set_title('$u(t,x)$', fontsize = 10)####### Row 1: h(t,x) slices ##################    gs1 = gridspec.GridSpec(1, 2)gs1.update(top=1-1/2-0.05, bottom=0.15, left=0.15, right=0.85, wspace=0.5)ax = plt.subplot(gs1[0, 0])ax.plot(x,Exact[idx_t0,:], 'b-', linewidth = 2) ax.plot(x0, u0, 'rx', linewidth = 2, label = 'Data')      ax.set_xlabel('$x$')ax.set_ylabel('$u(t,x)$')    ax.set_title('$t = %.2f$' % (t[idx_t0]), fontsize = 10)ax.set_xlim([lb-0.1, ub+0.1])ax.legend(loc='upper center', bbox_to_anchor=(0.8, -0.3), ncol=2, frameon=False)ax = plt.subplot(gs1[0, 1])ax.plot(x,Exact[idx_t1,:], 'b-', linewidth = 2, label = 'Exact') ax.plot(x_star, U1_pred[:,-1], 'r--', linewidth = 2, label = 'Prediction')      ax.set_xlabel('$x$')ax.set_ylabel('$u(t,x)$')    ax.set_title('$t = %.2f$' % (t[idx_t1]), fontsize = 10)    ax.set_xlim([lb-0.1, ub+0.1])    ax.legend(loc='upper center', bbox_to_anchor=(0.1, -0.3), ncol=2, frameon=False)savefig('./figures/retest/reAC')

4. 实验细节及复现结果

  这里使用4层全连接神经网络,输入层和输出层各两个神经元,输入层一个神经元代表xxx坐标值,输出层101个神经元分别代表[un+c1(x),⋯,un+cq(x),un+1(x)][u^{n+c_1}(x),\cdots,u^{n+c_q}(x),u^{n+1}(x)][un+c1​(x),⋯,un+cq​(x),un+1(x)],隐藏层每层100个神经元。为了计算误差,作者提供了使用谱方法计算的(256∗201)(256*201)(256∗201)个真解,其中第一维度代表空间xxx,第二维度代表时间ttt. 训练10000次之后输出结果如下:

It: 9970, Loss: 5.127e+00, Time: 0.08
It: 9980, Loss: 1.335e+01, Time: 0.07
It: 9990, Loss: 2.095e+01, Time: 0.07
Error: 2.470155e-01

这里误差是相对误差,计算公式如下:
Error=∣∣U−Uext∣∣2∣∣Uext∣∣2\begin{align} \begin{aligned} Error = \frac{||U-U_{ext}||_2}{||U_{ext}||_2} \end{aligned} \end{align} Error=∣∣Uext​∣∣2​∣∣U−Uext​∣∣2​​​​​
其中U∈R512×1,Uext∈R512×1U \in \mathbb{R}^{512 \times 1},U_{ext}\in \mathbb{R}^{512 \times 1}U∈R512×1,Uext​∈R512×1,前者为t=0.9t=0.9t=0.9时PINN预测的解,后者为t=0.9t=0.9t=0.9时计算的精确解。复现结果图如下:
在这里插入图片描述
论文中结果如下:
在这里插入图片描述

参考资料

[1]. Physics-informed machine learning

相关内容

热门资讯

求经典台词和经典旁白 求经典台词和经典旁白谁有霹雳布袋戏里的经典对白和经典旁白啊?朋友,你尝过失去的滋味吗? 很多人在即将...
小王子第二章主要内容概括 小王子第二章主要内容概括小王子第二章主要内容概括小王子第二章主要内容概括
爱情睡醒了第15集里刘小贝和项... 爱情睡醒了第15集里刘小贝和项天骐跳舞时唱的那首歌是什么谢谢开始找舞伴的时候是林俊杰的《背对背拥抱》...
世界是什么?世界是什么概念?可... 世界是什么?世界是什么概念?可以干什么?物质的和意识的 除了我们生活的地方 比方说山 河 公路 ...
全职猎人中小杰和奇牙拿一集被抓 全职猎人中小杰和奇牙拿一集被抓动画片是第五十九集,五十八集被发现,五十九被带回基地,六十逃走
“不周山”意思是什么 “不周山”意思是什么快快快快......一座山,神话里被共工撞倒了。
《揭秘》一元一分15张跑得快群... 一元一分麻将群加群主微【ab120590】【tj525555】 【mj120590】等风也等你。喜欢...
玩家必看手机正规红中麻将群@2... 好运连连,全网推荐:(ab120590)(mj120590)【tj525555】-Q号:(QQ443...
始作俑者15张跑的快群@24小... 微信一元麻将群群主微【ab120590】 【tj525555】【mj120590】一元一分群内结算,...
《重大通知》24小时一元红中麻... 加V【ab120590】【tj525555】【mj120590】红中癞子、跑得快,等等,加不上微信就...
盘点一下正规一块红中麻将群@2... 一元一分麻将群加群主微:微【ab120590】 【mj120590】【tj525555】喜欢手机上打...
(免押金)上下分一元一分麻将群... 微【ab120590】 【mj120590】【tj525555】专业麻将群三年房费全网最低,APP苹...
[解读]正规红中麻将跑的快@群... 微信一元麻将群群主微【ab120590】 【tj525555】【mj120590】一元一分群内结算,...
《普及一下》全天24小时红中... 微【ab120590】 【mj120590】【tj525555】专业麻将群三年房费全网最低,APP苹...
优酷视频一元一分正规红中麻将... 好运连连,全网推荐:(ab120590)(mj120590)【tj525555】-Q号:(QQ443...
《火爆》加入附近红中麻将群@(... 群主微【ab120590】 【mj120590】【tj525555】免带押进群,群内跑包包赔支持验证...
《字节跳动》哪里有一元一分红中... 1.进群方式-[ab120590]或者《mj120590》【tj525555】--QQ(QQ4434...
全网普及红中癞子麻将群@202... 好运连连,全网推荐:(ab120590)(mj120590)【tj525555】-Q号:(QQ443...
「独家解读」一元一分麻将群哪里... 1.进群方式《ab120590》或者《mj120590》《tj525555》--QQ(4434063...
通知24小时不熄火跑的快群@2... 1.进群方式《ab120590》或者《mj120590》《tj525555》--QQ(4434063...