国内研究团队突破超高温陶瓷材料研发瓶颈
创始人
2025-06-24 12:56:12

  该新型超高温陶瓷材料可应用于航空航天等领域(本图片为AI生成)。  近日,华南理工大学材料科学与工程学院副教授庄磊、研究员褚衍辉团队通过高熵多组元成分设计,同时结合搭建的激光氧化测试平台,成功开发可耐3600℃高温的抗氧化高熵碳化物(Hf, Ta, Zr, W)C材料。相关成果发表于《先进材料》(Advanced Materials)。  《先进材料》审稿人给予高度评价,一致认为是超高温材料领域的重大突破。论文通讯作者褚衍辉表示,该新型超高温陶瓷材料在航空航天、新能源等需耐受极端高温的领域具有广阔的应用前景,突破了相关领域的研究瓶颈。  随着超高声速飞行器、往返式轨道飞行器等先进装备的不断发展,迫切需要研发具有卓越耐高温性能的先进材料。在现有已知材料中,能在2000℃以上稳定服役的材料屈指可数,仅部分难熔合金、碳基复合材料、超高温陶瓷可满足需求。  以上三类材料中,2000℃已逼近难熔合金的耐温极限;碳基复合材料虽然具有更优异的耐温性,如C/C复合材料最高可耐3000℃,但碳材料在370℃有氧环境中便会发生氧化,导致力学性能显著下降;超高温陶瓷是一类熔点大于3000℃的先进陶瓷材料,是目前最有希望在超高温有氧环境中稳定服役的材料,但由于其抗氧化温度始终未能突破3000℃,严重制约了新一代先进空天飞行器热防护系统的开发。  高熵碳化物陶瓷组分是影响其抗氧化性能的关键。为了提升材料相关性能,研究团队在国家自然科学基金、广东省基础与应用基础研究基金等项目的资助下,首先自主搭建了超高温激光氧化测试平台。随后,以Hf、Ta、Zr元素为基础,设计了不同组分的高熵碳化物陶瓷,并测试了在2400℃~3000℃下的抗氧化性能。结果表明(Hf, Ta, Zr, W)C材料在全温域下具有最低的氧化深度,其氧化动力学在2400℃~3000℃温度段内均遵循抛物线规律,证明其具有优异的宽温域抗氧化性能。  该材料的超高温抗氧化性能主要得益于生成的具有超高熔点的钨合金。相比其他元素,钨元素的表面氧原子吸附能最高,导致氧化难度最大,而除钨以外的其余元素则会优先氧化,并包裹于钨合金表面,进一步阻碍钨合金的氧化。在此原理基础上,钨合金弥散分布于氧化物层,可作为高熔点骨架,提高氧化物黏度,进而有效降低氧化物的高温挥发,阻碍氧气向内部基体渗透。  论文通讯作者庄磊表示,研究团队使用激光考核平台进一步测试了该材料在更高温度下的氧化性能,验证了其可在最高3600℃下展现出色的抗氧化性能,显著优于已报道的其他超高温材料。(朱汉斌)

相关内容

热门资讯

面对面做好群众工作 党的作风关系党的形象,关系人心向背,关系党的生死存亡。作风问题的核心是党同人民群众的关系问题。广大党...
环保税征管迎来“数字监督员”   近年来,山西省太原市尖草坪区检察院以“数字检察”战略为引领,运用大数据办案思维,依托大数据法律监...
重庆华森制药股份有限公司关于公... 证券代码:002907 证券简称:华森制药 公告编号:2025-088重庆华森制药股份有限公司关于...
用实绩实效彰显使命担当 新华社记者  王 希  王悦阳中央企业负责人会议12月22日至23日在京召开。会上传达了习近平总书记...
文艺复兴古城秋日法治絮语    刘静坤教授在意大利费拉拉大学作学术讲座。  近日,我应邀在意大利费拉拉大学进行系列学术讲座。古...