二叉搜索树又称二叉排序树,它可以是一棵空树,或者是具有以下性质的二叉树:若它的左子树不为空,则左子树上所有节点的值都小于根节点的值;若它的右子树不为空,则右子树上所有节点的值都大于根节点的值;它的左右子树也分别为二叉搜索树。
即当我们按中序来遍历输出这棵树的节点时,是有序的,按从小到大的顺序。
Find/FindR
a.从根开始查找,val比根节点值大则往右边走查找,比根节点值小则往左边走查找;
b.最多查找高度次,走到到空,还没找到,说明这个值不存在。
//普通版本--用循环解决
bool Find(const K& key)
{Node* cur = _root;while (cur){if (cur->_key < key){cur = cur->_right;}else if (cur->_key > key){cur = cur->_left;}else{return true;}}return false;
}//用递归来解决
public:
bool FindR(const K& key)
{return _FindR(_root, key);
}
private:
bool _FindR(Node* root, const K& key)
{if (root == nullptr)return false;if (key > root->_key)return _FindR(root->_right, key);else if (key < root->_key)return _FindR(root->_left, key);elsereturn true;
}
Insert/InsertR
需要考虑以下场景:
a.树为空,则直接新增节点new
,赋值给root指针;
b.树不为空,按二叉搜索树性质查找插入位置,即与根节点比较,比根节点的值小,往左查找;比根节点的值大,往右查找,找到该位置后插入新节点。这个过程需要用到2个指针,一个为判断当前值与key孰大孰小的cur指针,一个是保存cur的父节点的parent指针,最终要把key值节点插入在parent的左/右节点。【注意:此处的二叉搜索树无相同值】
bool Insert(const K& key)
{//如果根节点为空,直接插入这个值if (_root == nullptr){_root = new Node(key);return true;}Node* cur = _root;Node* parent = nullptr;while (cur){if (cur->_key == key){//如果二叉搜索树中已经有一样的值了,插入失败return false;}else if (key > cur->_key){parent = cur;//与根节点比较,比根节点的值小,往左走;比根节点的值大,往右走cur = cur->_right;}else{parent = cur;cur = cur->_left;}}cur = new Node(key);//与根节点比较,比根节点的值大,就链接在右边if (key > parent->_key){parent->_right = cur;}else{parent->_left = cur;}return true;
}public:bool InsertR(const K& key){return _InsertR(_root, key);}
private:
bool _InsertR(Node*& root, const K& key){//方式1 bool _InsertR(Node* root, const K& key)//if (key > root->_key)//{// if (root->_right == nullptr)// {// root->_right = new Node(key);// return true;// }// else// return _InsertR(root->_right, key);//}//else if (key < root->_key)//{// if (root->_left == nullptr)// {// root->_left = new Node(key);// return true;// }// else// return _InsertR(root->_left, key);//}//else// return false;//方式2 bool _InsertR(Node*& root, const K& key)if (root == nullptr){root = new Node(key);return true;}if (key > root->_key)return _InsertR(root->_right, key);else if (key < root->_key)return _InsertR(root->_left, key);elsereturn false;}
这里的二叉搜索树无法保证左右平衡。
Erase/EraseR
首先查找元素是否在二叉搜索树中,如果不存在,则返回, 否则要删除的结点可能分下面四种情况:
看起来待删除节点的处理方式有4种情况,实际上情况1可以与情况2或者3合并起来,因此真正的删除过程如下:
//普通版本
bool Erase(const K& key)
{Node* parent = nullptr;Node* cur = _root;while (cur){//与根节点比较,比根节点的值大,往右走;比根节点的值小,往左走if (key > cur->_key){parent = cur;cur = cur->_right;}else if (key < cur->_key){parent = cur;cur = cur->_left;}else{//能走到这,就说明找到了要删除的这个节点,要删除的节点为cur//情况1:左子节点为空,右子节点不为空if (cur->_left == nullptr){//需要特殊处理根节点,因为根节点无父节点if (cur == _root){_root = cur->_right;}else{//cur为parent的左子节点,cur的子节点就得继承parent的左子节点if (parent->_left == cur){parent->_left = cur->_right;}//cur为parent的右子节点,cur的子节点就得继承parent的右子节点else{parent->_right = cur->_right;}}delete cur;}//情况2:左子节点不为空,右子节点为空else if (cur->_right == nullptr){//需要特殊处理根节点,因为根节点无父节点if (cur == _root){_root = cur->_left;}else{//cur为parent的左子节点,cur的子节点就得继承parent的左子节点if (parent->_left == cur){parent->_left = cur->_left;}//cur为parent的右子节点,cur的子节点就得继承parent的右子节点else{parent->_right = cur->_left;}}delete cur;}//情况3:左右子节点均不为空else{//在cur的右子树中寻找中序的第一个结点Node* parent = cur;Node* minRight = cur->_right;//此处前置条件是cur的左右子树均不为空while (minRight->_left){parent = minRight;minRight = minRight->_left;}//交换cur和minRight的值cur->_key = minRight->_key;//删除minRightif (minRight == parent->_left)parent->_left = minRight->_right;elseparent->_right = minRight->_right;delete minRight;}return true;}}//走到这,说明没找到return false;
}//递归版本
public:bool EraseR(const K& key){return _EraseR(_root, key);}
private:bool _EraseR(Node*& root, const K& key){if (root == nullptr)return false;if (key > root->_key){return _EraseR(root->_right, key);}else if (key < root->_key){return _EraseR(root->_left, key);}else{Node* del = root;//相等就开始删除if (root->_left == nullptr){root = root->_right;}//情况2:左子节点不为空,右子节点为空else if (root->_right == nullptr){ root = root->_left;}//情况3:左右子节点均不为空else{Node* minRight = root->_right;while (minRight->left){minRight = minRight->left;}swap(root->_key, minRight->_key);// 转换成在子树中去删除节点return _EraseR(root->_right, key);}delete del;return true; }}
InOrder
在不暴露根节点_root
的情况下(比如写一个函数getroot()
等让用户获取),套一层函数接口就直接在类内使用这个_root
,实现中序遍历
void InOrder()
{_InOrder(_root);std::cout << std::endl;
}
private:
void _InOrder(Node* root)
{//中序:左根右if (root == nullptr) return;_InOrder(root->_left);std::cout << root->_key << " ";_InOrder(root->_right);
}
注意:二叉搜素树不支持改,对于二叉搜索树而言,仅仅修改对应节点的值,极有可能破坏原结构,所以改=删除+插入
public:BSTree():_root(nullptr){}BSTree(const BSTree& t){_root = Copy(t._root);}BSTree& operator=(BSTree t){swap(_root, t._root);return *this;}~BSTree(){Destory(_root);_root = nullptr;}
private:void Destory(Node* root){if (root == nullptr)return;//按后序来删除Destory(root->_left);Destory(root->_right);delete root;}Node* Copy(Node* root){if (root == nullptr)return nullptr;//前序遍历,再递归拷贝Node* newnode = new Node(root->_key);newnode->_left = Copy(root->_left);newnode->_right = Copy(root->_right);return newnode;}
K模型–判断某个key在不在的场景;KV模型–通过key查找或修改value
比如:给一个单词word,判断该单词是否拼写正确,具体方式如下:以词库中所有单词集合中的每个单词作为key,构建一棵二叉搜索树在二叉搜索树中检索该单词是否存在,存在则拼写正确,不存在则拼写错误。其他场景:检查单词拼写是否正确/车库出入系统/宿舍楼门禁系统
的键值对。该种方式在现实生活中非常常见:比如英汉词典就是英文与中文的对应关系,通过英文可以快速找到与其对应的中文,英文单词与其对应的中文
插入和删除操作都必须先查找,查找效率代表了二叉搜索树中各个操作的性能。
对有n个结点的二叉搜索树,若每个元素查找的概率相等,则二叉搜索树平均查找长度是结点在二叉搜索树的深度的函数,即结点越深,则比较次数越多。
但对于同一个关键码集合,如果各关键码插入的次序不同,可能得到不同结构的二叉搜索树:
但是如果退化成单支树,二叉搜索树的性能就很差,后续引入红黑树和AVL树来解决。