经典的悖论问题(悖论选择题)
admin
2023-01-08 13:15:14
0

1.请举一个最简单的悖论例子

历史上著名的悖论

NO.1

说谎者悖论(1iar paradox or Epimenides' paradox)

最古老的语义悖论。公元前6世纪古希腊哲学家伊壁孟德

所创的四个悖论之一。是关于“我正在撒谎”的悖论。具体为:如果他的确正在撒谎,那么这句话是真的,所以伊壁孟德不在撤谎,如果他不在撒谎,那么这句话是假的,因而伊壁孟德正在撒谎。

NO.2

伊勒克特拉悖论(Eletra paradox) 逻辑史上最早的内涵悖论。由古希腊斯多亚学派提出。它的基本内容是:伊勒克特拉有位哥哥奥列斯特回家了.尽管伊勒支持拉知道奥列斯特是她的哥哥.但她并不认识站在她面前的这个男人。

写成一个推理.即:

伊勒克持拉不知道站在她面前的这个人是她的哥哥。

伊勒克持拉知道奥列期特是她的哥哥。

站在她面前的人是奥列期特。

所以,伊勒克持拉既知道并且又不知道这个人是她的 哥哥。

NO.3

M:著名的理发师悖论是伯特纳德·罗素提出的。一个理发师的招牌上写着:

告示:城里所有不自己刮脸的男人都由我给他们刮脸,我也只给这些人刮脸。

M:谁给这位理发师刮脸呢?

M:如果他自己刮脸,那他就属于自己刮脸的那类人。但是,他的招牌说明他不给这类人刮脸,因此他不能自己来刮。

M:如果另外一个人来给他刮脸,那他就是不自己刮脸的人。但是,他的招牌说他要给所有这类人刮脸。因此其他任何人也不能给他刮脸。看来,没有任何人能给这位理发师刮脸了!

NO.4

唐·吉诃德悖论

M:小说《唐·吉诃德》里描写过一个国家.它有一条奇怪的法律:每一个旅游者都要回答一个问题。

问,你来这里做什么?

M:如果旅游者回答对了。一切都好办。如果回答错了,他就要被绞死。

M:一天,有个旅游者回答——

旅游者:我来这里是要被绞死。

M:这时,卫兵也和鳄鱼一样慌了神,如果他们不把这人绞死,他就说错了,就得受绞刑。可是,如果他们绞死他,他就说对了,就不应该绞死他。

2.求一些简单有趣的悖论

喜欢大刘的《三体》的顶~

说谎者悖论

公元前六世纪,哲学家克利特人艾皮米尼地斯(Epimenides):“所有克利特人都说谎,他们中间的一个诗人这么说。”

人们会问:艾皮米尼地斯有没有说谎?

这个悖论最简单的形式是:“我在说谎”。

“我在说谎”: 如果他在说谎,那么“我在说谎”就是一个谎,因此他说的是实话;但是如果这是实话,他又在说谎。矛盾不可避免。

它的一个翻版:“这句话是错的。”

罗素悖论

唐·吉诃德的仆人桑乔·潘萨跑到一个小岛上,成了这个岛的国王。他颁布了一条奇怪的法律:每一个到达这个岛的人都必须回答一个问题:“你到这里来做什么?”如果回答对了,就允许他在岛上游玩,而如果答错了,就要把他绞死。对于每一个到岛上来的人,或者是尽兴地玩,或者是被吊上绞架。有多少人敢冒死到这岛上去玩呢?一天,有一个胆大包天的人来了,他照例被问了这个问题,而这个人的回答是:“我到这里来是要被绞死的。”请问桑乔·潘萨是让他在岛上玩,还是把他绞死呢?如果应该让他在岛上游玩,那就与他说“要被绞死”的话不相符合,这就是说,他说“要被绞死”是错话。既然他说错了,就应该被处绞刑。但如果桑乔·潘萨要把他绞死呢?这时他说的“要被绞死”就与事实相符,从而就是对的,既然他答对了,就不该被绞死,而应该让他在岛上玩。小岛的国王发现,他的法律无法执行,因为不管怎么执行,都使法律受到破坏。他思索再三,最后让卫兵把他放了,并且宣布这条法律作废。这又是一条悖论。

外祖母(父)悖论(时间旅行~)

如果一个人真的“返回过去”,并且在其外祖母怀他母亲之前就杀死了自己的外祖母,那么这个跨时间旅行者本人还会不会存在呢?这个问题很明显,如果没有你的外祖母就没有你的母亲,如果没有你的母亲也就没有你,如果没有你,你怎么“返回过去”,并且在其外祖母怀他母亲之前就杀死了自己的外祖母。

费米悖论

1950年的一天,诺贝尔奖获得者、物理学家费米在和别人讨论飞碟及外星人问题时,突然冒出一句:“他们都在哪儿呢?”这句看似简单的问话,就是著名的“费米悖论”。 “费米悖论”隐含之意是,理论上讲,人类能用100万年的时间飞往银河系各个星球,那么,外星人只要比人类早进化100万年,现在就应该来到地球了。换言之,“费米悖论”表明了这样的悖论:A.外星人是存在的——科学推论可以证明,外星人的进化要远早于人类,他们应该已经来到地球并存在于某处了;B.外星人是不存在的——迄今为止,人类并未发现任何有关外星人存在的蛛丝马迹。

芝诺悖论

阿基里斯追一只海龟,若海龟在阿基里斯前面,则阿基里斯永远赶不上海龟。因为阿基里斯必须首先跑到海龟的出发点,而当他到达海龟的出发点时,海龟又向前了一段到达某一点A,阿基里斯跑到A点时,海龟又向前了一段到某一点B……如此一直追赶下去,所以阿基里斯永远不可能追上海龟。

还有不懂的请追问

希望对你有帮助哦

3.请举一个最简单的悖论例子

历史上著名的悖论 NO.1 说谎者悖论(1iar paradox or Epimenides' paradox) 最古老的语义悖论。

公元前6世纪古希腊哲学家伊壁孟德 所创的四个悖论之一。是关于“我正在撒谎”的悖论。

具体为:如果他的确正在撒谎,那么这句话是真的,所以伊壁孟德不在撤谎,如果他不在撒谎,那么这句话是假的,因而伊壁孟德正在撒谎。 NO.2 伊勒克特拉悖论(Eletra paradox) 逻辑史上最早的内涵悖论。

由古希腊斯多亚学派提出。它的基本内容是:伊勒克特拉有位哥哥奥列斯特回家了.尽管伊勒支持拉知道奥列斯特是她的哥哥.但她并不认识站在她面前的这个男人。

写成一个推理.即: 伊勒克持拉不知道站在她面前的这个人是她的哥哥。 伊勒克持拉知道奥列期特是她的哥哥。

站在她面前的人是奥列期特。 所以,伊勒克持拉既知道并且又不知道这个人是她的 哥哥。

NO.3 M:著名的理发师悖论是伯特纳德·罗素提出的。一个理发师的招牌上写着: 告示:城里所有不自己刮脸的男人都由我给他们刮脸,我也只给这些人刮脸。

M:谁给这位理发师刮脸呢? M:如果他自己刮脸,那他就属于自己刮脸的那类人。但是,他的招牌说明他不给这类人刮脸,因此他不能自己来刮。

M:如果另外一个人来给他刮脸,那他就是不自己刮脸的人。但是,他的招牌说他要给所有这类人刮脸。

因此其他任何人也不能给他刮脸。看来,没有任何人能给这位理发师刮脸了! NO.4 唐·吉诃德悖论 M:小说《唐·吉诃德》里描写过一个国家.它有一条奇怪的法律:每一个旅游者都要回答一个问题。

问,你来这里做什么? M:如果旅游者回答对了。一切都好办。

如果回答错了,他就要被绞死。 M:一天,有个旅游者回答—— 旅游者:我来这里是要被绞死。

M:这时,卫兵也和鳄鱼一样慌了神,如果他们不把这人绞死,他就说错了,就得受绞刑。可是,如果他们绞死他,他就说对了,就不应该绞死他。

4.预料不到的考试的悖论的答案

谎言者悖论 公元前六世纪,哲学家克利特人艾皮米尼地斯(Epimenides):“所有克利特人都说谎,他们中间的一个诗人这么说。”

这就是这个著名悖论的来源。 《圣经》里曾经提到:“有克利特人中的一个本地中先知说:‘克利特人常说谎话,乃是恶兽,又馋又懒’”(《提多书》第一章)。

可见这个悖论很出名,但是保罗对于它的逻辑解答并没有兴趣。 人们会问:艾皮米尼地斯有没有说谎?这个悖论最简单的形式是: 1-2 “我在说谎” 如果他在说谎,那么“我在说谎”就是一个谎,因此他说的是实话;但是如果这是实话,他又在说谎。

矛盾不可避免。它的一个翻版: 1-3 “这句话是错的” 这类悖论的一个标准形式是:如果事件A发生,则推导出非A,非A发生则推导出A,这是一个自相矛盾的无限逻辑循环。

拓扑学中的单面体是一个形像的表达。理发师悖论 在萨维尔村,理发师挂出一块招牌:“我只给村里所有那些不给自己理发的人理发。”

有人问他:“你给不给自己理发?”理发师顿时无言以对。 这是一个矛盾推理:如果理发师不给自己理发,他就属于招牌上的那一类人。

有言在先,他应该给自己理发。 反之,如果这个理发师给他自己理发,根据招牌所言,他只给村中不给自己理发的人理发,他不能给自己理发。

因此,无论这个理发师怎么回答,都不能排除内在的矛盾。这个悖论是罗素在一九○二年提出来的,所以又叫“罗素悖论”。

这是集合论悖论的通俗的、有故事情节的表述。显然,这里也存在着一个不可排除的“自指”问题。

集合论悖论 “R是所有不包含自身的集合的集合。” 人们同样会问:“R包含不包含R自身?”如果不包含,由R的定义,R应属于R。

如果R包含自身的话,R又不属于R。 继罗素的集合论悖论发现了数学基础有问题以后,1931年歌德尔(Kurt Godel ,1906-1978,捷克人)提出了一个“不完全定理”,打破了十九世纪末数学家“所有的数学体系都可以由逻辑推导出来”的理想。

这个定理指出:任何公设系统都不是完备的,其中必然存在着既不能被肯定也不能被否定的命题。例如,欧氏几何中的“平行线公理”,对它的否定产生了几种非欧几何;罗素悖论也表明集合论公理体系不完备。

书目悖论 一个图书馆编纂了一本书名词典,它列出这个图书馆里所有不列出自己书名的书。那么它列不列出自己的书名? 这个悖论与理发师悖论基本一致。

苏格拉底悖论 有“西方孔子”之称的雅典人苏格拉底(Socrates,公元前470-前399)是古希腊的大哲学家,曾经与普洛特哥拉斯、哥吉斯等著名诡辩家相对。他建立 “定义”以对付诡辩派混淆的修辞,从而勘落了百家的杂说。

但是他的道德观念不为希腊人所容,竟在七十岁的时候被当作诡辩杂说的代表。在普洛特哥拉斯被驱逐、书被焚十二年以后,苏格拉底也被处以死刑,但是他的学说得到了柏拉图和亚里斯多德的继承。

苏格拉底有一句名言:“我只知道一件事,那就是什么都不知道。” “言尽悖” 这是《庄子·齐物论》里庄子说的。

后期墨家反驳道:如果“言尽悖”,庄子的这个言难道就不悖吗?我们常说: 1-7 “世界上没有绝对的真理” 我们不知道这句话本身是不是“绝对的真理”。 1-8 “荒谬的真实” 有字典给悖论下定义,说它是“荒谬的真实”,而这种矛盾修饰本身也是一种“压缩的悖论”。

悖论(paradox)来自希腊语“para+dokein”,意思是“多想一想”。 这些例子都说明,在逻辑上它们都无法摆脱概念自指所带来的恶性循环。

有没有进一步的解决办法?在下面一节的最后一部份还将继续探讨。二分法悖论 这也是芝诺提出的一个悖论:当一个物体行进一段距离到达D,它必须首先到达距离D的二分之一,然后是四分之一、八分之一、十六分之一、以至可以无穷地划分下去。

因此,这个物体永远也到达不了D。 这些结论在实践中不存在,但是在逻辑上无可挑剔。

芝诺甚至认为:“不可能有从一地到另一地的运动,因为如果有这样的运动,就会有‘完善的无限’,而这是不可能的。”如果阿基里斯事实上在T时追上了乌龟,那么,“这是一种不合逻辑的现象,因而决不是真理,而仅仅是一种欺骗”。

这就是说感官是不可靠的,没有逻辑可靠。 他认为:“穷尽无限是绝对不可能的”。

根据这个运动理论,芝诺还提出了一个类似的运动佯谬:2-3 “飞矢不动” 在芝诺看来,由于飞箭在其飞行的每个瞬间都有一个瞬时的位置,它在这个位置上和不动没有什么区别。那么,无限个静止位置的总和就等于运动了吗?或者无限重复的静止就是运动?中国古代也有类似的说法,如: 2-4 “飞鸟之景,未尝动也” 这是中国名家惠施的命题,与“飞矢不动”同工异曲。

这就是不可抗拒的推理和不可回避的实事相冲突。 德国哲学家尼采在《希腊悲剧时代的哲学》里有一章《可疑的悖论》,称芝诺的悖论为“否定感官的悖论”。

尽管阿基里斯在赛跑中追上起步领先的乌龟完全合乎事实,但为什么“不合逻辑”?因为芝诺运用了“无限”这个概念,这是一种逻辑上的假设,而现实世界里是不可能有无限者存在的,这就出现了假设与现实的矛盾。“父在母先亡” 这是一个可以自圆其说的乩语。

它也有。

5.悖论大全

1. 理发师悖论(罗素悖论):某村只有一人理发,且该村的人都需要理发,理发师规定,给且只给村中不自己理发的人理发。

试问:理发师给不给自己理发? 如果理发师给自己理发,则违背了自己的约定;如果理发师不给自己理发,那么按照他的规定,又应该给自己理发。这样,理发师陷入了两难的境地。

2. 芝诺悖论——阿基里斯与乌龟:公元前5世纪,芝诺用他的无穷、连续以及部分和的知识,引发出以下著名的悖论:他提出让阿基里斯与乌龟之间举行一场赛跑,并让乌龟在阿基里斯前头1000米开始。假定阿基里斯能够跑得比乌龟快10倍。

比赛开始,当阿基里斯跑了1000米时,乌龟仍前于他100米;当阿基里斯跑了下一个100米时,乌龟依然前于他10米……所以,阿基里斯永远追不上乌龟。 3. 说谎者悖论:公元前6世纪,古希腊克里特岛的哲学家伊壁门尼德斯有如此断言:“所有克里特人所说的每一句话都是谎话。”

如果这句话是真的,那么也就是说,克里特人伊壁门尼德斯说了一句真话,但是却与他的真话——所有克里特人所说的每一句话都是谎话——相悖;如果这句话不是真的,也就是说克里特人伊壁门尼德斯说了一句谎话,则真话应是:所有克里特人所说的每一句话都是真话,两者又相悖。 所以怎样也难以自圆其说,这就是著名的说谎者悖论。

公元前4世纪,希腊哲学家又提出了一个悖论:“我现在正在说的这句话是真的。”同上,这又是难以自圆其说! 说谎者悖论至今仍困扰着数学家和逻辑学家。

说谎者悖论有许多形式。如:我预言:“你下面要讲的话是‘不’,对不对?用‘是’或‘不是’来回答。”

又如,“我的下一句话是错(对)的,我的上一句话是对(错)的”。 4. 跟无限相关的悖论: {1,2,3,4,5,…}是自然数集: {1,4,9,16,25,…}是自然数平方的数集。

这两个数集能够很容易构成一一对应,那么,在每个集合中有一样多的元素吗? 5. 伽利略悖论:我们都知道整体大于部分。由线段BC上的点往顶点A连线,每一条线都会与线段DE(D点在AB上,E点在AC上)相交,因此可得DE与BC一样长,与图矛盾。

为什么? 6. 预料不到的考试的悖论:一位老师宣布说,在下一星期的五天内(星期一到星期五)的某一天将进行一场考试,但他又告诉班上的同学:“你们无法知道是哪一天,只有到了考试那天的早上八点钟才通知你们下午一点钟考。” 你能说出为什么这场考试无法进行吗? 7. 电梯悖论:在一幢摩天大楼里,有一架电梯是由电脑控制运行的,它每层楼都停,且停留的时间都相同。

然而,办公室靠近顶层的王先生说:“每当我要下楼的时候,都要等很久。停下的电梯总是要上楼,很少有下楼的。

真奇怪!”李小姐对电梯也很不满意,她在接近底层的办公室上班,每天中午都要到顶楼的餐厅吃饭。她说:“不论我什么时候要上楼,停下来的电梯总是要下楼,很少有上楼的。

真让人烦死了!” 这究竟是怎么回事?电梯明明在每层停留的时间都相同,可为什么会让接近顶楼和底层的人等得不耐烦? 8. 硬币悖论:两枚硬币平放在一起,顶上的硬币绕下方的硬币转动半圈,结果硬币中图案的位置与开始时一样;然而,按常理,绕过圆周半圈的硬币的图案应是朝下的才对!你能解释为什么吗? 罗素悖论(理发师悖论)让人们发现了数学这座辉煌大厦的基础部分存在的一条巨大的裂缝。于是,数学家们开始探索数学结论在什么情况下才具有真理性,数学推理在什么情况下才是有效的……,从而产生了一门新的数学分支——数学基础论。

9. 谷堆悖论:显然,1粒谷子不是堆; 如果1粒谷子不是堆,那么2粒谷子也不是堆; 如果2粒谷子不是堆,那么3粒谷子也不是堆; …… 如果99999粒谷子不是堆,那么100000粒谷子也不是堆; …… 10. 宝塔悖论:如果从一砖塔中抽取一块砖,它不会塌;抽两块砖,它也不会塌;……抽第N块砖时,塔塌了。现在换一个地方开始抽砖,同第一次不一样的是,抽第M块砖是,塔塌了。

再换一个地方,塔塌时少了L块砖。以此类推,每换一个地方,塔塌时少的砖块数都不尽相同。

那么到底抽多少块砖塔才会塌呢?因此,1000000粒谷子不是堆。

6.有什么些很经典的悖论

由概念自指引发的悖论和引进无限带来的悖论 (一)由自指引发的悖论 以下诸例都存在着一个概念自指或自相关的问题:如果从肯定命题入手,就会得到它的否定命题;如果从否定命题入手,就会得到它的肯定命题。

1-1 谎言者悖论 公元前六世纪,哲学家克利特人艾皮米尼地斯(Epimenides):"所有克利特人都说谎,他们中间的一个诗人这么说。"这就是这个著名悖论的来源。

《圣经》里曾经提到:"有克利特人中的一个本地中先知说:'克利特人常说谎话,乃是恶兽,又馋又懒'"(《提多书》第一章)。可见这个悖论很出名,但是保罗对于它的逻辑解答并没有兴趣。

人们会问:艾皮米尼地斯有没有说谎?这个悖论最简单的形式是: 1-2 "我在说谎" 如果他在说谎,那么"我在说谎"就是一个谎,因此他说的是实话;但是如果这是实话,他又在说谎。矛盾不可避免。

它的一个翻版: 1-3 "这句话是错的" 这类悖论的一个标准形式是:如果事件A发生,则推导出非A,非A发生则推导出A,这是一个自相矛盾的无限逻辑循环。拓扑学中的单面体是一个形像的表达。

哲学家罗素曾经认真地思考过这个悖论,并试图找到解决的办法。他在《我的哲学的发展》第七章《数学原理》里说道:"自亚里士多德以来,无论哪一个学派的逻辑学家,从他们所公认的前提中似乎都可以推出一些矛盾来。

这表明有些东西是有毛病的,但是指不出纠正的方法是什么。在1903年的春季,其中一种矛盾的发现把我正在享受的那种逻辑蜜月打断了。

" 他说:谎言者悖论最简单地勾画出了他发现的那个矛盾:"那个说谎的人说:'不论我说什么都是假的'。事实上,这就是他所说的一句话,但是这句话是指他所说的话的总体。

只是把这句话包括在那个总体之中的时候才产生一个悖论。"(同上) 罗素试图用命题分层的办法来解决:"第一级命题我们可以说就是不涉及命题总体的那些命题;第二级命题就是涉及第一级命题的总体的那些命题;其余仿此,以至无穷。

"但是这一方法并没有取得成效。"1903年和1904年这一整个时期,我差不多完全是致力于这一件事,但是毫不成功。

"(同上) 《数学原理》尝试整个纯粹的数学是在纯逻辑的前提下推导出来的,并且使用逻辑术语说明概念,回避自然语言的歧意。但是他在书的序言里称这是:"发表一本包含那么许多未曾解决的争论的书。

"可见,从数学基础的逻辑上彻底地解决这个悖论并不容易。 接下来他指出,在一切逻辑的悖论里都有一种"反身的自指",就是说,"它包含讲那个总体的某种东西,而这种东西又是总体中的一份子。

"这一观点比较容易理解,如果这个悖论是克利特以为的什么人说的,悖论就会自动消除。但是在集合论里,问题并不这么简单。

1-4 理发师悖论 在萨维尔村,理发师挂出一块招牌:"我只给村里所有那些不给自己理发的人理发。"有人问他:"你给不给自己理发?"理发师顿时无言以对。

这是一个矛盾推理:如果理发师不给自己理发,他就属于招牌上的那一类人。有言在先,他应该给自己理发。

反之,如果这个理发师给他自己理发,根据招牌所言,他只给村中不给自己理发的人理发,他不能给自己理发。 因此,无论这个理发师怎么回答,都不能排除内在的矛盾。

这个悖论是罗素在1902年提出来的,所以又叫"罗素悖论"。这是集合论悖论的通俗的、有故事情节的表述。

显然,这里也存在着一个不可排除的"自指"问题。 1-5 集合论悖论 "R是所有不包含自身的集合的集合。

" 人们同样会问:"R包含不包含R自身?"如果不包含,由R的定义,R应属于R。如果R包含自身的话,R又不属于R。

继罗素的集合论悖论发现了数学基础有问题以后,1931年歌德尔(Kurt Godel,1906-1978,捷克人)提出了一个"不完全定理",打破了十九世纪末数学家"所有的数学体系都可以由逻辑推导出来"的理想。这个定理指出:任何公设系统都不是完备的,其中必然存在着既不能被肯定也不能被否定的命题。

例如,欧氏几何中的"平行线公理",对它的否定产生了几种非欧几何;罗素悖论也表明集合论公理体系不完备。 1-6 书目悖论 一个图书馆编纂了一本书名词典,它列出这个图书馆里所有不列出自己书名的书。

那么它列不列出自己的书名? 这个悖论与理发师悖论基本一致。 1-7 苏格拉底悖论 有"西方孔子"之称的雅典人苏格拉底(Socrates,公元前470-前399)是古希腊的大哲学家,曾经与普洛特哥拉斯、哥吉斯等著名诡辩家相对。

他建立"定义"以对付诡辩派混淆的修辞,从而勘落了百家的杂说。但是他的道德观念不为希腊人所容,竟在七十岁的时候被当作诡辩杂说的代表。

在普洛特哥拉斯被驱逐、书被焚十二年以后,苏格拉底也被处以死刑,但是他的学说得到了柏拉图和亚里斯多德的继承。 苏格拉底有一句名言:"我只知道一件事,那就是什么都不知道。

" 这是一个悖论,我们无法从这句话中推论出苏格拉底是否对这件事本身也不知道。古代中国也有一个类似的例子: 1-7 "言尽悖" 这是《庄子·齐物论》里庄子说的。

后期墨家反驳道:如果"言尽悖",庄子的这个言难道就。

7.求几个经典的悖论

(1)理发师悖论:1919年,罗素把他提出的集合论悖论通俗化如下:萨魏尔村有一位理发师,他给自己订下一条规则:他只给村子里自己不给自己刮胡子的人刮胡子。

请问他该不该给自己刮胡子? (2)苏格拉底悖论:苏格拉底有一句名言:“我只知道一件事,那就是什么都不知道。” (3)纸牌悖论:纸牌悖论就是纸牌的一面写着:“纸牌反面的句子是对的。”

而另一面却写着:“纸牌反面的句子是错的。”这是由英国数学家Jourdain提出来的。

我们同样推不出结果来。 (4)上帝万能悖论:“如果说上帝是万能的,他能否创造一块他举不起来的大石头?” (5)鳄鱼悖论:一条鳄鱼抢走了一个小孩,它对孩子的母亲说:“我会不会吃掉你的小孩?答对了,孩子还给你;答错了,我就吃了他。”

请问孩子母亲该如何回答才能保住孩子的性命 (6)老子悖论:“知者不言,言者不知。”是一条悖论,被白居易一语道穿。

白居易在《读老子》里说道:“言者不知知者默,此语吾闻于老君。若道老君是知者,缘何自着五千文?” 扩展资料: 悖论是表面上同一命题或推理中隐含着两个对立的结论,而这两个结论都能自圆其说。

悖论的抽象公式就是:如果事件A发生,则推导出非A,非A发生则推导出A。 悖论是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。

悖论根源于知性认识、知性逻辑(传统逻辑)、矛盾逻辑的局限性。 产生悖论的根本原因是把传统逻辑形式化、把形式逻辑普适性绝对化,即把形式逻辑当做思维方式。

所有悖论都是因形式逻辑思维方式产生,形式逻辑思维方式发现不了、解释不了、解决不了的逻辑错误。所谓解悖,就是运用对称逻辑思维方式发现、纠正悖论中的逻辑错误。

性质 悖论是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。 根源 悖论根源于知性认识、知性逻辑(传统逻辑)、矛盾逻辑的局限性。

产生悖论的根本原因是把传统逻辑形式化、把传统逻辑普适性绝对化,即把形式逻辑当作思维方式。 用对称逻辑解“鳄鱼困境悖论” 一个鳄鱼偷了一个父亲的儿子,它保证如果这个父亲能猜出它要做什么,它就会将儿子还给父亲。

如果这个父亲猜“鳄鱼不会将儿子还给他”,就会成为所谓的“悖论”:如果鳄鱼不还儿子,那么父亲就猜对了,鳄鱼就必须把孩子还给父亲,否则鳄鱼违背了诺言;如果鳄鱼将儿子还给他,那么父亲就猜错了,鳄鱼又违背了诺言。 解悖:鳄鱼“要做什么”是一种心理状态,鳄鱼“把孩子还给父亲”是一种行为,二者在时间上是前后衔接的两个阶段。

同样,这个父亲猜“鳄鱼不会将儿子还给他”是鳄鱼心理状态,后来“鳄鱼将儿子还给他”是鳄鱼行为。 这个父亲猜“鳄鱼不会将儿子还给他”这种鳄鱼的心理状态和后来“鳄鱼将儿子还给他”这种鳄鱼行为之间同时存在并不矛盾——正是因为这个父亲猜对了鳄鱼的心理“不把儿子还给他”,所以鳄鱼为了履行诺言必须在行动上把儿子还给他。

在这里对称逻辑通过限定时间范围,使语言的内容和语言的对象对称。 参考资料:百度百科-悖论。

8.求一句话悖论只要简单的一句话~~不要长长的故事~~比如:我正 爱问

一、谎言者悖论 1、“所有人都在说谎”。

那么说这句话的人是不是在说谎呢?这个悖论最简单的形式是:“我在说谎”。 2、“我在说谎” 如果他在说谎,那么“我在说谎”就是一个谎,因此他说的是实话;但是如果这是实话,他又在说谎。

矛盾不可避免。 3、它的一个翻版:“这句话是错的。”

二、理发师悖论:“我只给村里所有那些不给自己理发的人理发。” 有人问他:“你给不给自己理发?”理发师顿时无言以对。

这是一个矛盾推理:如果理发师不给自己理发,他就属于招牌上的那一类人。 有言在先,他应该给自己理发。

反之,如果这个理发师给他自己理发,根据招牌所言,他只给村中不给自己理发的人理发,他不能给自己理发。 因此,无论这个理发师怎么回答,都不能排除内在的矛盾。

这个悖论是罗素在一九○二年提出来的,所以又叫“罗素悖论”。 这是集合论悖论的通俗的、有故事情节的表述。

显然,这里也存在着一个不可排除的“自指”问题。 三、集合论悖论:“R是所有不包含自身的集合的集合。”

人们同样会问:“R包含不包含R自身?”如果不包含,由R的定义,R应属于R;如果R包含自身的话,R又不属于R。 四、书目悖论:“一个图书馆编纂了一本书名词典,它列出这个图书馆里所有不列出自己书名的书。”

那么它列不列出自己的书名?这个悖论与理发师悖论基本一致。 五、格拉底悖论 1、苏格拉底有一句名言:“我只知道一件事,那就是什么都不知道。”

这是一个悖论,我们无法从这句话中推论出苏格拉底是否对这件事本身也不知道。 古代中国也有一个类似的例子,那就是“言尽悖”。

2、“言尽悖” 这是《庄子·齐物论》里庄子说的。后期墨家反驳道:如果“言尽悖”,庄子的这个言难道就不悖吗?再看看我们常说的:“世界上没有绝对的真理”。

我们不知道这句话本身是不是“绝对的真理”。 六、“荒谬的真实” 有字典给悖论下定义,说它是“荒谬的真实”,而这种矛盾修饰本身也是一种“压缩的悖论”。

悖论(paradox)来自希腊语“para+dokein”,意思是“多想一想”。 七、如果在有限中引进无限,就可能引起悖论。

阿基里斯(Achilles)是希腊神话中善跑的英雄。芝诺讲:“阿基里斯在赛跑中不可能追上起步稍微领先于他的乌龟,因为当他要到达乌龟出发的那一点,乌龟又向前爬动了。

阿基里斯和乌龟的距离可以无限地缩小,但永远追不上乌龟。” 有人用物理语言描述这个问题说,在阿基里斯悖论中使用了两种不同的时间度量。

一般度量方法是:假设阿基里斯与乌龟在开始时的距离为S,速度分别为V1和V2。当时间T=S/(V1-V2)时,阿基里斯就赶上了乌龟。

但是芝诺的测量方法不同:阿基里斯将逐次到达乌龟在前一次的出发点,这个时间为T'。对于任何T',可能无限缩短,但阿基里斯永远在乌龟的后面。

关键是这个T'无法度量T=S/(V1-V2)以后的时间。 八、二分法悖论 1、“当一个物体行进一段距离到达D,它必须首先到达距离D的二分之一,然后是四分之一、八分之一、十六分之一、以至可以无穷地划分下去。

因此,这个物体永远也到达不了D。 这些结论在实践中不存在,但是在逻辑上无可挑剔。

芝诺甚至认为:“不可能有从一地到另一地的运动,因为如果有这样的运动,就会有‘完善的无限’,而这是不可能的。”如果阿基里斯事实上在T时追上了乌龟,那么,“这是一种不合逻辑的现象,因而决不是真理,而仅仅是一种欺骗”。

这就是说感官是不可靠的,没有逻辑可靠。 他认为:“穷尽无限是绝对不可能的”。

根据这个运动理论,芝诺还提出了一个类似的运动佯谬:“飞矢不动”。 2、“飞矢不动” 在芝诺看来,由于飞箭在其飞行的每个瞬间都有一个瞬时的位置,它在这个位置上和不动没有什么区别。

那么,无限个静止位置的总和就等于运动了吗?或者无限重复的静止就是运动?中国古代也有类似的说法。 3、“飞鸟之景,未尝动也” 这是中国名家惠施的命题,与“飞矢不动”同工异曲。

这就是不可抗拒的推理和不可回避的实事相冲突。 假定箭拥有一种存在,那么,它就是不动的、非时间的、非造而有的、固定的、永恒的。

这是一个荒谬的观念! 假定运动是真正的实在,那么,就不存在静止。因而,箭没有位置、没有空间。

又是一个荒谬的观点! 假定时间是实在的,那么,它就不可能被无限地分割。箭飞行所需要的时间必定由一个有限数目的瞬间组成,其中每个瞬间都必定是一个原子。

仍然是一个荒谬的观念! 九、还有“一尺之捶,日取其半,万世不竭”、““1厘米线段内的点与太平洋面上的点一样多” 。


相关内容

热门资讯

幂想是什么? 幂想是什么?好奇心而已啦!呵呵~~就是静下心来想象!很放松的
仙剑4的玄宵假设他如果修成魔了... 仙剑4的玄宵假设他如果修成魔了战九天玄女谁会比较强?不好说,姜还是老的辣。。如果玄宵老兄也成魔,那不...
西方第一本以地理命名的专著《地... 西方第一本以地理命名的专著《地理学》的作者是谁?西方第一本以地理命名的专著《地理学》的作者是谁?托勒...
君子坦荡荡,小人常兮兮是什么意... 君子坦荡荡,小人常兮兮是什么意思唯爱一梦3540**** :你好。语出自滚孙键《论大巧语 述而篇》...
被打入冷宫的有名妃子及冷宫的别... 被打入冷宫的有名妃子及冷宫的别称越详细越好、越多越好Thank you.宋:李妃,千波殿
你别丢下我 翻译成英语是什么? 你别丢下我 翻译成英语是什么?You don't leave meplease do not lea...
这个禅宗公案。 这个禅宗公案。阿弥陀佛!师兄,这个意思就是:大道本来如此,太平常,故而无法言说;真理就是这样,最简单...
如果大部分地球人飞往外星生活,... 如果大部分地球人飞往外星生活,那不变的会是什么呢?大部分地球人飞往外星生活,不变的是地球上的山川湖海...
为什么广东人那么喜欢煲汤? 为什么广东人那么喜欢煲汤?煲汤有什么好处?因为广东的饮食文化里就有煲汤,煲汤食物的营养都会在汤里,不...
宋宣公的趣闻轶事 宋宣公的趣闻轶事兄长友爱 宋宣公曾经对弟弟宋穆公说:“我对儿子与夷的爱,还不如对你的爱,我认为作为...
英雄联盟里德莱文的飞刀落地是怎... 英雄联盟里德莱文的飞刀落地是怎么判断的投出去后 地上不有个圆形的标记么 这就是要落的位置 ...
为什么会喜欢大叔 为什么会喜欢大叔因为大叔生活经验丰富,知道疼人、关心人,也知道该说什么不该说什么,知道善解人意,另外...
《大武生》中刘谦眼的算是丑角吗... 《大武生》中刘谦眼的算是丑角吗,怎么越看越可笑……不知道,没时间看,好看吗?相对反面人物,为了得到自...
明日黄花广东红中麻将群@今日/... 群主微信【ab120590】【hf420624】【mj120590】一元 两元 麻将群跑得快群都有,...
天命神话正规1元1分红中麻将群... 认准管理加v:微【ab120590】【mj120590】【hf420624】七年稳定老群!随时拿起手...
到哪里找线上加人一分一元-2... 微【ab120590】 【mj120590】【hf420624】广东一元一分红中麻将推倒胡等麻将群,...
今日热点正规一块红中麻将群@2... 1.进群方式-[ab120590]或者《mj120590》【hf420624】--QQ(QQ4434...
揭秘一元一分上下分红中麻将群 群主微信【ab120590】【hf420624】【mj120590】一元 两元 麻将群跑得快群都有,...
哪里寻找正规红中麻将跑的快群@... 一元一分麻将群加群主微:微【ab120590】 【mj120590】【hf420624】喜欢手机上打...
欲言又止谁有广东红中一元一分麻... 群主微信【ab120590】【hf420624】【mj120590】一元 两元 麻将群跑得快群都有,...