相关系数的检验主要有两种方法:一种是对假设 “相关系数ρ=0” 的t检验,另一种是对假设 “相关系数ρ≠0”的z检验。
关于t检验:检验r是否显著,即检验r是否不等于零。
关于z检验:假设相关系数等于ρ,经过一系列步骤,计算出该假设在显著性水平α下为真的置信区间(通俗的讲,就是计算得到一个范围(rlow,rhi),如果要检验的相关系数落在这个范围内(rlow 扩展资料 相关表和 相关图可反映两个变量之间的相互关系及其相关方向,但无法确切地表明两个变量之间 相关的程度。于是,著名统计学家 卡尔·皮尔逊设计了 统计指标——相关系数(Correlation coefficient)。 相关系数是用以反映变量之间相关关系密切程度的统计指标。相关系数是按积差方法计算,同样以两变量与各自 平均值的 离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。 需要说明的是,皮尔逊相关系数并不是唯一的相关系数,但是最常见的相关系数,以下解释都是针对皮尔逊相关系数。
这个你要看用的是什么相关系数了。
一般的话,大家最常用的就是Pearson积矩相关系数,如果是用的这个相关系数的话就用t检验对总体相关系数进行检验就行了。