🍨 本文为🔗365天深度学习训练营 中的学习记录博客
🍦 参考文章:Pytorch实战 | 第P4周:猴痘病识别
🍖 原作者:K同学啊|接辅导、项目定制
这期博客在之前的猴痘病识别的基础上添加了指定图片预测与保存并加载模型这两个模块,将来我们训练后的模型是需要部署到真实环境中去测试的。
如果设备支持GPU就使用GPU,否则就是用CPU,但推荐深度学习使用GPU,如果设备不行,可以去网上云平台跑模型。
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlibdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")device
device(type='cuda')
import os,PIL,random,pathlibdata_dir = 'E:\\深度学习\\data\\Day13'
data_dir = pathlib.Path(data_dir)data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[4] for path in data_paths]
classeNames
['Monkeypox', 'Others']
total_datadir = 'E:\\深度学习\\data\\Day13'train_transforms = transforms.Compose([transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
total_data
Dataset ImageFolderNumber of datapoints: 2142Root location: E:\深度学习\data\Day13StandardTransform
Transform: Compose(Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=None)ToTensor()Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]))
total_data.class_to_idx
{'Monkeypox': 0, 'Others': 1}
将总数据集分为训练集和测试集,其中训练集占总数据集的80%,测试集占20%
train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_size, test_size
(1713, 429)
将训练集和测试集分别封装成 DataLoader 对象,方便对数据进行批量处理,batch_size 表示每个 batch 的大小,shuffle 表示是否随机打乱数据,num_workers 表示使用多少个线程来读取数据
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=1)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=32, shuffle=True, num_workers=1)
for X, y in test_loader:print(X.shape, y.shape)break
torch.Size([32, 3, 224, 224]) torch.Size([32])
接下来我们定义一个简单的CNN网络结构。
import torch.nn.functional as F# 定义一个带有Batch Normalization的卷积神经网络
class Network_bn(nn.Module):def __init__(self):super(Network_bn, self).__init__()"""nn.Conv2d()函数:第一个参数(in_channels)是输入的channel数量第二个参数(out_channels)是输出的channel数量第三个参数(kernel_size)是卷积核大小第四个参数(stride)是步长,默认为1第五个参数(padding)是填充大小,默认为0"""# 第一个卷积层,输入的channel数量是3,输出的channel数量是12,卷积核大小为5,步长为1,填充大小为0self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)self.bn1 = nn.BatchNorm2d(12) # Batch Normalization层,输入的channel数量是12# 第二个卷积层,输入的channel数量是12,输出的channel数量是12,卷积核大小为5,步长为1,填充大小为0self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)self.bn2 = nn.BatchNorm2d(12) # Batch Normalization层,输入的channel数量是12# 最大池化层,池化核大小为2,步长为2self.pool = nn.MaxPool2d(2,2)# 第三个卷积层,输入的channel数量是12,输出的channel数量是24,卷积核大小为5,步长为1,填充大小为0self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)self.bn4 = nn.BatchNorm2d(24) # Batch Normalization层,输入的channel数量是24# 第四个卷积层,输入的channel数量是24,输出的channel数量是24,卷积核大小为5,步长为1,填充大小为0self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)self.bn5 = nn.BatchNorm2d(24) # Batch Normalization层,输入的channel数量是24# 全连接层,输入的大小是24*50*50,输出的大小是类别数self.fc1 = nn.Linear(24*50*50, len(classeNames))# 定义网络的前向传播过程def forward(self, x):x = F.relu(self.bn1(self.conv1(x))) # 第一层卷积、Batch Normalization和ReLU激活函数x = F.relu(self.bn2(self.conv2(x))) # 第二层卷积、Batch Normalization和ReLU激活函数x = self.pool(x) # 最大池化层x = F.relu(self.bn4(self.conv4(x))) x = F.relu(self.bn5(self.conv5(x))) # 第五层卷积、Batch Normalization和ReLU激活函数x = self.pool(x) # 最大池化层x = x.view(-1, 24*50*50) # 将卷积层的输出展平成一维向量x = self.fc1(x) # 全连接层return xdevice = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))model = Network_bn().to(device)
model
Using cuda device
Network_bn((conv1): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1))(bn1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1))(bn2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(conv4): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1))(bn4): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv5): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1))(bn5): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(fc1): Linear(in_features=60000, out_features=2, bias=True)
)
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
我们自己定义一个训练函数train,该函数接受四个参数:dataloader,model,loss_fn和optimizer。其中,dataloader是一个PyTorch的数据加载器,用于加载训练数据;model是一个PyTorch的神经网络模型;loss_fn是一个损失函数,用于计算模型的预测误差;optimizer是一个优化器,用于更新模型的参数。函数的返回值是训练误差和训练精度。
在函数中,首先初始化训练误差和训练精度为0,然后遍历训练数据集中的每个批次。对于每个批次,首先将输入数据和标签数据转换为指定的设备(如GPU)上的张量,然后将输入数据输入模型,得到模型的预测结果。接着,使用损失函数计算模型的预测误差,并根据误差进行反向传播和参数更新。最后,累计训练误差和训练精度,并在每训练100个批次时输出当前的训练误差。最后,计算训练误差和训练精度的平均值,并输出训练误差和训练精度。该函数的作用是完成深度学习模型的训练过程,将输入数据经过模型计算得到输出结果,并根据损失函数计算输出结果与标签之间的差异,从而优化模型的参数,使模型能够更好地拟合数据。
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)num_batches = len(dataloader)train_loss, train_acc = 0, 0for batch, (X, y) in enumerate(dataloader):X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)loss = loss_fn(pred, y)# 反向传播optimizer.zero_grad()loss.backward()optimizer.step()train_loss += loss.item()train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()if batch % 100 == 0:loss, current = loss.item(), batch * len(X)print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")train_loss /= num_batchestrain_acc /= sizeprint(f"Train Error: \n Accuracy: {(100*train_acc):>0.1f}%, Avg loss: {train_loss:>8f} \n")return train_loss, train_acc
测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器。
我们自己定义一个训练函数test函数,模型在测试集上的评估,包括计算测试集上的损失和准确率。
具体来说,test函数接受一个数据集迭代器、一个模型、一个损失函数作为输入,并返回模型在测试集上的平均损失和准确率。
函数的具体实现如下:
需要注意的是,由于在测试集上不需要反向传播计算梯度,因此需要使用torch.no_grad()上下文管理器来禁用梯度计算,从而提高计算效率。
def test(dataloader, model, loss_fn):size = len(dataloader.dataset)num_batches = len(dataloader)model.eval()test_loss, test_acc = 0, 0with torch.no_grad():for X, y in dataloader:X, y = X.to(device), y.to(device)pred = model(X)test_loss += loss_fn(pred, y).item()test_acc += (pred.argmax(1) == y).type(torch.float).sum().item()test_loss /= num_batchestest_acc /= sizeprint(f"Test Error: \n Accuracy: {(100*test_acc):>0.1f}%, Avg loss: {test_loss:>8f} \n")return test_loss, test_acc
epochs = 20
train_loss, train_acc = [], []
test_loss, test_acc = [], []
for t in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_loader, model, loss_fn, optimizer)train_loss.append(epoch_train_loss)train_acc.append(epoch_train_acc)model.eval()epoch_test_acc, epoch_test_loss = test(test_loader, model, loss_fn)test_loss.append(epoch_test_loss)test_acc.append(epoch_test_acc)print(f"Epoch {t+1}\n-------------------------------")train(train_loader, model, loss_fn, optimizer)test(test_loader, model, loss_fn)
print("Done!")
训练结果为:
loss: 1.199974 [ 0/ 1713]
Train Error: Accuracy: 83.9%, Avg loss: 0.503470 Test Error: Accuracy: 86.2%, Avg loss: 0.487529 Epoch 1
-------------------------------
loss: 0.062999 [ 0/ 1713]
Train Error: Accuracy: 81.9%, Avg loss: 0.463360 Test Error: Accuracy: 79.7%, Avg loss: 0.457709 loss: 0.708710 [ 0/ 1713]
Train Error: Accuracy: 85.9%, Avg loss: 0.406817 Test Error: Accuracy: 85.3%, Avg loss: 0.506047 Epoch 2
-------------------------------
loss: 0.270929 [ 0/ 1713]
Train Error: Accuracy: 87.2%, Avg loss: 0.338913 Test Error: Accuracy: 82.8%, Avg loss: 0.500975 loss: 0.657500 [ 0/ 1713]
Train Error: Accuracy: 87.1%, Avg loss: 0.405702 Test Error: Accuracy: 80.4%, Avg loss: 0.691268 Epoch 3
-------------------------------
loss: 0.149799 [ 0/ 1713]
Train Error: Accuracy: 87.9%, Avg loss: 0.310380 Test Error: Accuracy: 79.7%, Avg loss: 0.514998 loss: 0.230001 [ 0/ 1713]
Train Error: Accuracy: 85.9%, Avg loss: 0.478800 Test Error: Accuracy: 76.9%, Avg loss: 1.450183 Epoch 4
-------------------------------
loss: 0.731624 [ 0/ 1713]
Train Error: Accuracy: 84.7%, Avg loss: 0.388541 Test Error: Accuracy: 83.2%, Avg loss: 0.551030 loss: 0.425535 [ 0/ 1713]
Train Error: Accuracy: 87.9%, Avg loss: 0.339442 Test Error: Accuracy: 84.6%, Avg loss: 0.762711 Epoch 5
-------------------------------
loss: 0.261778 [ 0/ 1713]
Train Error: Accuracy: 91.4%, Avg loss: 0.251970 Test Error: Accuracy: 84.1%, Avg loss: 0.550993 loss: 0.120489 [ 0/ 1713]
Train Error: Accuracy: 92.3%, Avg loss: 0.267334 Test Error: Accuracy: 82.1%, Avg loss: 0.732856 Epoch 6
-------------------------------
loss: 0.545078 [ 0/ 1713]
Train Error: Accuracy: 93.5%, Avg loss: 0.190953 Test Error: Accuracy: 81.4%, Avg loss: 0.654517 loss: 0.242050 [ 0/ 1713]
Train Error: Accuracy: 93.9%, Avg loss: 0.166487 Test Error: Accuracy: 86.5%, Avg loss: 0.520211 Epoch 7
-------------------------------
loss: 0.032337 [ 0/ 1713]
Train Error: Accuracy: 94.4%, Avg loss: 0.139460 Test Error: Accuracy: 81.8%, Avg loss: 0.571910 loss: 0.111919 [ 0/ 1713]
Train Error: Accuracy: 95.3%, Avg loss: 0.133110 Test Error: Accuracy: 87.9%, Avg loss: 0.581790 Epoch 8
-------------------------------
loss: 0.011513 [ 0/ 1713]
Train Error: Accuracy: 93.2%, Avg loss: 0.168966 Test Error: Accuracy: 84.6%, Avg loss: 0.612067 loss: 0.138732 [ 0/ 1713]
Train Error: Accuracy: 95.9%, Avg loss: 0.131339 Test Error: Accuracy: 85.5%, Avg loss: 0.658192 Epoch 9
-------------------------------
loss: 0.098304 [ 0/ 1713]
Train Error: Accuracy: 97.5%, Avg loss: 0.073731 Test Error: Accuracy: 86.2%, Avg loss: 0.648000 loss: 0.041354 [ 0/ 1713]
Train Error: Accuracy: 98.2%, Avg loss: 0.054499 Test Error: Accuracy: 85.1%, Avg loss: 0.804457 Epoch 10
-------------------------------
loss: 0.111462 [ 0/ 1713]
Train Error: Accuracy: 97.4%, Avg loss: 0.069474 Test Error: Accuracy: 86.9%, Avg loss: 0.575027 loss: 0.039980 [ 0/ 1713]
Train Error: Accuracy: 97.8%, Avg loss: 0.069207 Test Error: Accuracy: 86.5%, Avg loss: 0.715076 Epoch 11
-------------------------------
loss: 0.030235 [ 0/ 1713]
Train Error: Accuracy: 97.5%, Avg loss: 0.078401 Test Error: Accuracy: 87.2%, Avg loss: 0.594295 loss: 0.055335 [ 0/ 1713]
Train Error: Accuracy: 97.5%, Avg loss: 0.059249 Test Error: Accuracy: 87.4%, Avg loss: 0.696577 Epoch 12
-------------------------------
loss: 0.040502 [ 0/ 1713]
Train Error: Accuracy: 96.5%, Avg loss: 0.100692 Test Error: Accuracy: 82.1%, Avg loss: 0.793313 loss: 0.044457 [ 0/ 1713]
Train Error: Accuracy: 95.9%, Avg loss: 0.108039 Test Error: Accuracy: 84.6%, Avg loss: 0.848924 Epoch 13
-------------------------------
loss: 0.022895 [ 0/ 1713]
Train Error: Accuracy: 98.2%, Avg loss: 0.055400 Test Error: Accuracy: 86.2%, Avg loss: 0.881824 loss: 0.058409 [ 0/ 1713]
Train Error: Accuracy: 97.5%, Avg loss: 0.066015 Test Error: Accuracy: 86.5%, Avg loss: 0.834848 Epoch 14
-------------------------------
loss: 0.037372 [ 0/ 1713]
Train Error: Accuracy: 99.2%, Avg loss: 0.029454 Test Error: Accuracy: 86.5%, Avg loss: 0.886635 loss: 0.126379 [ 0/ 1713]
Train Error: Accuracy: 98.9%, Avg loss: 0.036465 Test Error: Accuracy: 86.7%, Avg loss: 0.926361 Epoch 15
-------------------------------
loss: 0.022206 [ 0/ 1713]
Train Error: Accuracy: 96.1%, Avg loss: 0.134624 Test Error: Accuracy: 83.0%, Avg loss: 0.761580 loss: 0.109468 [ 0/ 1713]
Train Error: Accuracy: 95.0%, Avg loss: 0.145105 Test Error: Accuracy: 86.2%, Avg loss: 0.864981 Epoch 16
-------------------------------
loss: 0.116144 [ 0/ 1713]
Train Error: Accuracy: 97.8%, Avg loss: 0.056436 Test Error: Accuracy: 85.5%, Avg loss: 0.808745 loss: 0.148035 [ 0/ 1713]
Train Error: Accuracy: 98.2%, Avg loss: 0.056249 Test Error: Accuracy: 87.2%, Avg loss: 0.805620 Epoch 17
-------------------------------
loss: 0.107752 [ 0/ 1713]
Train Error: Accuracy: 98.9%, Avg loss: 0.028704 Test Error: Accuracy: 85.3%, Avg loss: 0.989487 loss: 0.005748 [ 0/ 1713]
Train Error: Accuracy: 99.2%, Avg loss: 0.027402 Test Error: Accuracy: 86.0%, Avg loss: 0.791777 Epoch 18
-------------------------------
loss: 0.005322 [ 0/ 1713]
Train Error: Accuracy: 99.5%, Avg loss: 0.015000 Test Error: Accuracy: 86.2%, Avg loss: 0.807837 loss: 0.003800 [ 0/ 1713]
Train Error: Accuracy: 99.4%, Avg loss: 0.020819 Test Error: Accuracy: 84.4%, Avg loss: 1.052223 Epoch 19
-------------------------------
loss: 0.001303 [ 0/ 1713]
Train Error: Accuracy: 99.4%, Avg loss: 0.015747 Test Error: Accuracy: 85.8%, Avg loss: 1.024608 loss: 0.007683 [ 0/ 1713]
Train Error: Accuracy: 98.5%, Avg loss: 0.067711 Test Error: Accuracy: 85.3%, Avg loss: 1.076210 Epoch 20
-------------------------------
loss: 0.001310 [ 0/ 1713]
Train Error: Accuracy: 94.2%, Avg loss: 0.196802 Test Error: Accuracy: 84.8%, Avg loss: 0.813763 Done!
# 可视化上述训练结果
import matplotlib.pyplot as pltdef plot_curve(train_loss, val_loss, train_acc, val_acc):plt.figure(figsize=(8, 8))plt.subplot(2, 1, 1)plt.plot(train_loss, label='train loss')plt.plot(val_loss, label='val loss')plt.legend(loc='best')plt.xlabel('Epochs')plt.ylabel('Loss')plt.subplot(2, 1, 2)plt.plot(train_acc, label='train acc')plt.plot(val_acc, label='val acc')plt.legend(loc='best')plt.xlabel('Epochs')plt.ylabel('Accuracy')plt.show()
plot_curve(train_loss, test_loss, train_acc, test_acc)
from PIL import Image
classes = list(total_data.class_to_idx)def predict_one_image(image_path, model, transform, classes):test_img = Image.open(image_path).convert('RGB')# plt.imshow(test_img) # 展示预测的图片test_img = transform(test_img)img = test_img.to(device).unsqueeze(0)model.eval()output = model(img)_,pred = torch.max(output,1)pred_class = classes[pred]print(f'预测结果是:{pred_class}')
predict_one_image('E:\\深度学习\\data\\Day13\\Monkeypox\\M01_01_00.jpg', model, train_transforms, classes)
预测结果是:Monkeypox
预测结果是正确的,但是准确率没有到88%。
# 模型保存
torch.save(model.state_dict(), "model.pth")# 将参数加载到model当中
model.load_state_dict(torch.load(PATH, map_location=device))
print("Saved PyTorch Model State to model.pth")
Saved PyTorch Model State to model.pth
我添加了一层Dropout层,但是最后训练的准确率并没有提升。
...
Epoch 20
-------------------------------
loss: 0.019593 [ 0/ 1713]
Train Error: Accuracy: 99.1%, Avg loss: 0.023408 Test Error: Accuracy: 84.6%, Avg loss: 0.888081
下一篇:设备树下的LED灯