多元线性回归batchsize为N的情况分析
创始人
2024-05-30 00:58:22
0

之前介绍了一元线性回归batchsize=1和N的情况,现在我们探讨一下多元线性回归中标签是标量yyy,属性有M个,分别用{x1,⋯,xi}i∈M\{x_1,\cdots,x_i\} i \in M{x1​,⋯,xi​}i∈M表示,这样参数也是有M个,用w1,⋯,wi{w_1,\cdots,w_i}w1​,⋯,wi​表示。具体表示形式如下:
y=b+w1x1+⋯+wixiy=b+w_1x_1+\cdots+w_ix_i y=b+w1​x1​+⋯+wi​xi​
为了更简洁的用向量表示,将参数bbb看做w0w_0w0​,这样表达式可以写为:
y=w0+w1x1+⋯+wixi\begin{aligned} y=w_0+w_1x_1+\cdots+w_ix_i \end{aligned} y=w0​+w1​x1​+⋯+wi​xi​​
可以使用向量表示w={w0,⋯,wi}T\boldsymbol{w}=\{w_0,\cdots,w_i\}^Tw={w0​,⋯,wi​}T,x={1,x1,⋯,xi}T\boldsymbol{x}=\{1,x_1,\cdots,x_i\}^Tx={1,x1​,⋯,xi​}T,这样y=wTxy=\boldsymbol{w}^T\boldsymbol{x}y=wTx。
为了简单起见,我们还是先考虑batchsize为1的情况,这时损失函数LLL使用最小二乘损失表示为:
L=12(y−y∗)2=12(w0+w1x1∗+⋯+wixi∗−y∗)2\begin{aligned} L&=\frac{1}{2}(y-y^*)^2\\ &=\frac{1}{2}(w_0+w_1x_1^*+\cdots+w_ix_i^*-y^*)^2 \end{aligned} L​=21​(y−y∗)2=21​(w0​+w1​x1∗​+⋯+wi​xi∗​−y∗)2​
损失函数LLL对w\boldsymbol{w}w的分量分别求偏导:
∂L∂w0=(w0+w1x1∗+⋯+wixi∗−y∗)∗1\frac{\partial{L}}{\partial{w_0}}=(w_0+w_1x_1^*+\cdots+w_ix_i^*-y^*)*1 ∂w0​∂L​=(w0​+w1​x1∗​+⋯+wi​xi∗​−y∗)∗1
∂L∂w1=(w0+w1x1∗+⋯+wixi∗−y∗)x1∗\frac{\partial{L}}{\partial{w_1}}=(w_0+w_1x_1^*+\cdots+w_ix_i^*-y^*)x_1^* ∂w1​∂L​=(w0​+w1​x1∗​+⋯+wi​xi∗​−y∗)x1∗​

∂L∂wi=(w0+w1x1∗+⋯+wixi∗−y∗)xi∗\frac{\partial{L}}{\partial{w_i}}=(w_0+w_1x_1^*+\cdots+w_ix_i^*-y^*)x_i^* ∂wi​∂L​=(w0​+w1​x1∗​+⋯+wi​xi∗​−y∗)xi∗​
因此损失函数关于w\boldsymbol{w}w的梯度为:
∇L={∂L∂w0,⋯,∂L∂wi}T=(wTx∗−y∗)x∗\begin{aligned} \nabla L&=\{\frac{\partial{L}}{\partial{w_0}},\cdots,\frac{\partial{L}}{\partial{w_i}}\}^T\\ &=(\boldsymbol{w}^T\boldsymbol{x}^*-y^*)\boldsymbol{x}^* \end{aligned} ∇L​={∂w0​∂L​,⋯,∂wi​∂L​}T=(wTx∗−y∗)x∗​
设定步长step,参数更新方法如下:
wnew=w−step∗∇L\boldsymbol{w}_{new}=\boldsymbol{w}-step*\nabla L wnew​=w−step∗∇L
下面考虑batchsize为N的情况,这时损失函数LLL可表示为:
L=∑j=1N12(yj−yj∗)2=∑j=1N12(w0+w1x1j∗+⋯+wixij∗−yj∗)2=∑j=1N12(x∗Tw−yj∗)2=12(Aw−y∗)T(Aw−y∗)\begin{aligned} L&=\sum_{j=1}^{N}\frac{1}{2}(y^j-y^{j*})^2\\ &=\sum_{j=1}^{N}\frac{1}{2}(w_0+w_1x_1^{j*}+\cdots+w_ix_i^{j*}-y^{j*})^2\\ &=\sum_{j=1}^{N}\frac{1}{2}(\boldsymbol{x^*}^T\boldsymbol{w}-y^{j*})^2\\ &=\frac{1}{2}(A\boldsymbol{w}-\boldsymbol{y^*})^T(A\boldsymbol{w}-\boldsymbol{y^*})\\ \end{aligned} L​=j=1∑N​21​(yj−yj∗)2=j=1∑N​21​(w0​+w1​x1j∗​+⋯+wi​xij∗​−yj∗)2=j=1∑N​21​(x∗Tw−yj∗)2=21​(Aw−y∗)T(Aw−y∗)​

损失函数LLL对w\boldsymbol{w}w的分量分别求偏导:
∂L∂w0=∑j=1N(w0+w1x1j∗+⋯+wixij∗−yj∗)∗1=∑j=1Nw0+∑j=1Nw1x1j∗+⋯+∑j=1Nwixij∗−∑j=1Nyj∗=w0eTe+w1eTx1∗+⋯+wieTxi∗−eTy∗=eT(w0e+w1x1∗+⋯+wixi∗−y∗)=eT([e,x1∗,⋯,xi∗]w−y∗)=eT(Aw−y∗)\begin{aligned} \frac{\partial{L}}{\partial{w_0}}&=\sum_{j=1}^{N}(w_0+w_1x_1^{j*}+\cdots+w_ix_i^{j*}-y^{j*})*1\\ &=\sum_{j=1}^{N}w_0+\sum_{j=1}^{N}w_1x_1^{j*}+\cdots+\sum_{j=1}^{N}w_ix_i^{j*}-\sum_{j=1}^{N}y^{j*}\\ &=w_0\boldsymbol{e}^T\boldsymbol{e}+w_1\boldsymbol{e}^T\boldsymbol{x_1^*}+\cdots+w_i\boldsymbol{e}^T\boldsymbol{x_i^*}-\boldsymbol{e}^T\boldsymbol{y^*}\\ &=\boldsymbol{e}^T(w_0\boldsymbol{e}+w_1\boldsymbol{x_1^*}+\cdots+w_i\boldsymbol{x_i^*}-\boldsymbol{y^*})\\ &=\boldsymbol{e}^T([\boldsymbol{e},\boldsymbol{x_1^*},\cdots,\boldsymbol{x_i^*}]\boldsymbol{w}-\boldsymbol{y^*})\\ &=\boldsymbol{e}^T(A\boldsymbol{w}-\boldsymbol{y^*}) \end{aligned} ∂w0​∂L​​=j=1∑N​(w0​+w1​x1j∗​+⋯+wi​xij∗​−yj∗)∗1=j=1∑N​w0​+j=1∑N​w1​x1j∗​+⋯+j=1∑N​wi​xij∗​−j=1∑N​yj∗=w0​eTe+w1​eTx1∗​+⋯+wi​eTxi∗​−eTy∗=eT(w0​e+w1​x1∗​+⋯+wi​xi∗​−y∗)=eT([e,x1∗​,⋯,xi∗​]w−y∗)=eT(Aw−y∗)​
∂L∂w1=∑j=1N(w0+w1x1j∗+⋯+wixij∗−yj∗)x1j∗=∑j=1Nw0x1j∗+∑j=1Nw1x1j∗x1j∗+⋯+∑j=1Nwixij∗x1j∗−∑j=1Nyj∗x1j∗=w0x1∗Te+w1x1∗Tx1∗+⋯+wix1∗Txi∗−x1∗Ty∗=x1∗T(w0e+w1x1∗+⋯+wixi∗−y∗)=x1∗T([e,x1∗,⋯,xi∗]w−y∗)=x1∗T(Aw−y∗)\begin{aligned} \frac{\partial{L}}{\partial{w_1}}&=\sum_{j=1}^{N}(w_0+w_1x_1^{j*}+\cdots+w_ix_i^{j*}-y^{j*})x_1^{j*}\\ &=\sum_{j=1}^{N}w_0x_1^{j*}+\sum_{j=1}^{N}w_1x_1^{j*}x_1^{j*}+\cdots+\sum_{j=1}^{N}w_ix_i^{j*}x_1^{j*}-\sum_{j=1}^{N}y^{j*}x_1^{j*}\\ &=w_0\boldsymbol{x_1^{*T}}\boldsymbol{e}+w_1\boldsymbol{x_1}^{*T}\boldsymbol{x_1^*}+\cdots+w_i\boldsymbol{x_1}^{*T}\boldsymbol{x_i^*}-\boldsymbol{x_1}^{*T}\boldsymbol{y^*}\\ &=\boldsymbol{x_1}^{*T}(w_0\boldsymbol{e}+w_1\boldsymbol{x_1^*}+\cdots+w_i\boldsymbol{x_i^*}-\boldsymbol{y^*})\\ &=\boldsymbol{x_1}^{*T}([\boldsymbol{e},\boldsymbol{x_1^*},\cdots,\boldsymbol{x_i^*}]\boldsymbol{w}-\boldsymbol{y^*})\\ &=\boldsymbol{x_1}^{*T}(A\boldsymbol{w}-\boldsymbol{y^*}) \end{aligned} ∂w1​∂L​​=j=1∑N​(w0​+w1​x1j∗​+⋯+wi​xij∗​−yj∗)x1j∗​=j=1∑N​w0​x1j∗​+j=1∑N​w1​x1j∗​x1j∗​+⋯+j=1∑N​wi​xij∗​x1j∗​−j=1∑N​yj∗x1j∗​=w0​x1∗T​e+w1​x1​∗Tx1∗​+⋯+wi​x1​∗Txi∗​−x1​∗Ty∗=x1​∗T(w0​e+w1​x1∗​+⋯+wi​xi∗​−y∗)=x1​∗T([e,x1∗​,⋯,xi∗​]w−y∗)=x1​∗T(Aw−y∗)​
同样的方法可求出其他分量的偏导
∂L∂wi=xi∗T(Aw−y∗)\frac{\partial{L}}{\partial{w_i}}=\boldsymbol{x_i}^{*T}(A\boldsymbol{w}-\boldsymbol{y^*}) ∂wi​∂L​=xi​∗T(Aw−y∗)
其中A=[e,x1∗,⋯,xi∗]A=[\boldsymbol{e},\boldsymbol{x_1^*},\cdots,\boldsymbol{x_i^*}]A=[e,x1∗​,⋯,xi∗​]为每批batch的x值矩阵,在第一列增加了一个全1的列。损失函数关于w\boldsymbol{w}w的梯度为:
∇L={∂L∂w0,⋯,∂L∂wi}T=[eT,x1∗T,⋯,xi∗T]T(Aw−y∗)=AT(Aw−y∗)\begin{aligned} \nabla L&=\{\frac{\partial{L}}{\partial{w_0}},\cdots,\frac{\partial{L}}{\partial{w_i}}\}^T\\ &=[\boldsymbol{e}^T,\boldsymbol{x_1^*}^T,\cdots,\boldsymbol{x_i^*}^T]^T(A\boldsymbol{w}-\boldsymbol{y^*})\\ &=A^T(A\boldsymbol{w}-\boldsymbol{y^*}) \end{aligned} ∇L​={∂w0​∂L​,⋯,∂wi​∂L​}T=[eT,x1∗​T,⋯,xi∗​T]T(Aw−y∗)=AT(Aw−y∗)​
设定步长step,参数更新方法如下:
wnew=w−step∗∇L\boldsymbol{w}_{new}=\boldsymbol{w}-step*\nabla L wnew​=w−step∗∇L
使用矩阵和向量形式可以很方便的用numpy实现多元线性回归:

x = np.array([0.1,1.2,2.1,3.8,4.1,5.4,6.2,7.1,8.2,9.3,10.4,11.2,12.3,13.8,14.9,15.5,16.2,17.1,18.5,19.2,0.1,1.2,2.1,3.8,4.1,5.4,6.2,7.1,8.2,9.3,10.4,11.2,12.3,13.8,14.9,15.5,16.2,17.1,18.5,19.2])
y = np.array([5.7,8.8,10.8,11.4,13.1,16.6,17.3,19.4,21.8,23.1,25.1,29.2,29.9,31.8,32.3,36.5,39.1,38.4,44.2,43.4])
x = x.reshape(2,int(len(x)/2)).T
x = np.insert(arr=x,values=[1],obj=0,axis=1)
y = y.reshape(1,len(y)).T

回归过程如下:

# 设定步长
step=0.001
# 存储每轮损失的loss数组
loss_list=[]
# 定义epoch
epoch=500
# 定义batch_size
batch_size=12
# 定义单位列向量e
e=np.ones(batch_size).reshape(batch_size,1)
# 定义参数w和b并初始化
w=np.zeros(3).reshape(3,1)
#梯度下降回归
for i in range(epoch) :#计算当前输入x和标签y的索引,由于x和y数组长度一致,因此通过i整除x的长度即可获得当前索引index = i % int(len(x)/batch_size)# 当前轮次的x列向量值为:cx=x[index*batch_size:(index+1)*batch_size]# 当前轮次的y列向量值为:cy=y[index*batch_size:(index+1)*batch_size]# 计算当前lossloss_list.append(float(1/2*(cx.dot(w)-cy).T.dot(cx.dot(w)-cy)))# 计算参数w的梯度grad_w = cx.T.dot(cx.dot(w)-cy)# 更新w的值w -= step*grad_w
print(loss_list)
plt.plot(loss_list)
plt.show()
print(w)

相关内容

热门资讯

世界肥胖联盟呼吁——采取行动应... 转自:千龙网5月11日是世界防治肥胖日。不久前,总部位于英国伦敦的世界肥胖联盟发布2025年《全球肥...
巧搭鹊桥 邂逅美好   近日,新区正阳路街道兴业社区举办青年交友联谊活动,60余名单身青年(企业员工+辖区居民)参加。活...
澳媒:中国正增大澳大利亚牛肉进... 格隆汇5月12日|据澳大利亚广播公司5月10日消息,最新数据显示,澳大利亚4月牛肉出口量创历史新高。...
“五一”假期期间福建以旧换新带... 转自:中国消费者报  中国消费者报福州讯(记者张文章)“五一”假期,福建省商务厅启动“购在中国全闽乐...
带领乡亲播撒希望之光    王春凤在大棚查看蔬菜长势。  34岁,在外闯荡的她毅然决然地回到山东省成武县家乡,踏上了创业之...
消费企业密集境外上市 “新消费... 2024年下半年以来,消费企业赴境外上市已蔚然成风。据了解,2025年以来,消费类企业如茶饮品牌中的...
华统股份质押触发鹰眼“高风险”... 截止2025年5月10日,华统股份整体质押股份为2.00亿股,整体质押占总股本之比为31.61%,累...
金鸿顺质押触发鹰眼“风险”评级... 截止2025年5月10日,金鸿顺整体质押股份为3647.10万股,整体质押占总股本之比为20.35%...
俄研究显示一类耳聋多与致病基因...   新华社莫斯科5月11日电 (记者 栾海)俄罗斯萨拉托夫国立医科大学的研究者日前报告说,他们通过研...
激智科技质押触发鹰眼“风险”评... 截止2025年5月10日,激智科技整体质押股份为2044.00万股,整体质押占总股本之比为7.75%...
民德电子质押触发鹰眼“风险”评... 截止2025年5月10日,民德电子整体质押股份为1935.43万股,整体质押占总股本之比为11.31...
中信建投:中短期A股市场延续震... 5月12日,中信建投证券最新研报指出,公募基金基于基准的资金回流风险逐渐释放,A股市场延续震荡格局。...
加力稳外贸,跨境电商综试区再扩... 国务院日前发布的《关于同意在海南全岛和秦皇岛等15个城市(地区)设立跨境电子商务综合试验区的批复》(...
惠伦晶体质押触发鹰眼“高风险”... 截止2025年5月10日,惠伦晶体(维权)整体质押股份为4003.96万股,整体质押占总股本之比为1...
ST柯利达质押触发鹰眼“风险”... 截止2025年5月10日,ST柯利达整体质押股份为1.36亿股,整体质押占总股本之比为22.77%,...
一季度“万亿之城”稳健开局 新... 新华财经北京5月12日电 我国有27座城市2024年的地区生产总值超过1万亿元,被称为“万亿之城”。...
九洲药业核心股东质押股价疑似触... 截止2025年5月10日,九洲药业整体质押股份为5150.00万股,整体质押占总股本之比为5.75%...
阳光与微笑 阳光与微笑 谭云俸
*ST星农质押触发鹰眼“高风险... 截止2025年5月10日,*ST星农整体质押股份为3090.49万股,整体质押占总股本之比为11.4...
ST联创质押触发鹰眼“高风险”... 截止2025年5月10日,ST联创(维权)整体质押股份为2995.00万股,整体质押占总股本之比为2...