map、multimap、set、multiset 在其文档介绍中可以发现,这几个容器有个共同点是:其底层都是按照二叉搜索树来实现的,但是二叉搜索树有其自身的缺陷,假如往树中插入的元素有序或者接近有序,二叉搜索树就会退化成单支树,时间复杂度会退化成O(N)O(N)O(N),因此map、set等关联式容器的底层结构是对二叉树进行了平衡处理,即采用平衡树来实现。
二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。
因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年
发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。
一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:
如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在O(log2n)O(log_2 n)O(log2n),搜索时间复杂度O(log2nlog_2 nlog2n)。
AVL树的节点是三叉链结构:即parent、left和right,它们分别指向当前节点的父节点、左子节点和右子节点。通过这种方式,可以在O(1)O(1)O(1)的时间内找到一个节点的父节点、左子节点和右子节点。
namespace AVL
{templatestruct AVLTreeNode {AVLTreeNode* _left;AVLTreeNode* _right;AVLTreeNode* _parent; //指向父节点的指针pair _kv;int _bf; // 平衡因子AVLTreeNode(const pair& kv) :_left(nullptr),_right(nullptr),_parent(nullptr),_kv(kv),_bf(0){}};templateclass AVLTree{typedef AVLTreeNode Node;public:private:Node* _root = nullptr;};
}
AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入过程可以分为两步:
插入在左平衡因子-1,插入在右平衡因子+1
是否继续更新的依据:parent所在子树的高度是否变化
parent->_bf == 0
说明之前parent->_bf
是 1 或者 -1 说明之前parent一边高一边低,这次插入填上矮的那边,parent所在子树高度不变,不需要继续往上更新
parent->_bf == 1
或-1
说明之前是parent->_bf = 0
,两边一样高,现在插入一边更高了,parent所在子树高度变了,继续往上更新
parent->_bf == 2
或-2
,说明之前parent->_bf == 1
或者-1
,现在插入严重不平衡,违反规则,就地处理–旋转
bool insert(const pair& kv)
{// 1. 先按照二叉搜索树的规则将节点插入到AVL树中// 空树直接构建根if (_root == nullptr){_root = new Node(kv);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (kv.first > cur->_kv.first) // 大了往右边走{parent = cur;cur = cur->_right;}else if (kv.first < cur->_kv.first) // 小了往左边走{parent = cur;cur = cur->_left;}else{return false;// 相等不插入}}//开始插入cur = new Node(kv);// 新插入的节点// 小的插入左,大的插入右if (kv.first < parent->_kv.first){parent->_left = cur;cur->_parent = parent;// 三叉链,不要忘记更新父指针}else{parent->_right = cur;cur->_parent = parent;}// 2. 新节点插入后,AVL树的平衡性可能会遭到破坏// 此时需要更新平衡因子,并检测是否破坏了AVL树的平衡性while (parent) // parent为空,也就更新到根停止{// 更新平衡因子// 新增在左,parent->bf--;// 新增在右,parent->bf++;if (cur == parent->_left){parent->_bf--;}else{parent->_bf++;}//检测平衡因子if (parent->_bf == 0){break;// 无需继续更新}else if (parent->_bf == 1 || parent->_bf == -1){// 插入前parent的平衡因子是0,插入后parent的平衡因为为1 或者 - 1 ,说明以parent为根的二叉树// 的高度增加了一层,因此需要继续向上调整cur = parent;parent = parent->_parent;}else if (parent->_bf == 2 || parent->_bf == -2){// parent的平衡因子为-2/2,违反了AVL树的平衡性// 需要对以 parent 为根的树进行 旋转 处理// 旋转break; // 旋转完成后,原 parent 为根的子树高度降低,已经平衡,不需要再向上更新}else{assert(false); // 平衡因子异常:绝对值大于2}}return true;
}
在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时可通过旋转调整树的结构,使之平衡化。
旋转的目的:
根据节点插入位置的不同,AVL树的旋转分为四种:
在插入前,图中AVL树是平衡的,新节点插入到30的左子树(注意:此处不是左孩子,图中a/b/c是高度为 h 的AVL子树)中,30左子树增加了一层,导致以60为根的二叉树不平衡
要让60平衡,只能将60左子树的高度减少一层,右子树增加一层,即将左子树往上提,这样60转下来,因为60比30大,只能将其放在30的右子树,而如果30有右子树,右子树根的值一定大于30,小于60,只能将其放在60的左子树,旋转完成后,更新节点的平衡因子即可。
在旋转过程中,有以下几种情况需要考虑:
这里举一些详细的例子进行画图,考虑各种情况,加深旋转的理解
h == 0,则a/b/c是空树:
h == 1:
h == 2的情况已经有很多种了,随着h的增加情况会越来越复杂
看图写代码:
void RotateR(Node* parent)
{Node* subL = parent->_left;Node* subLR = subL->_right;// 30的右变成60的左parent->_left = subLR;if (subLR != nullptr) // 30的右不为空,更新_parent指针{subLR->_parent = parent;}Node* ppNode = parent->_parent;// 60变成30的右parent = subL->_right;parent->_parent = subL;//不要忘记更新parent的父指针if (_root == parent) // parent就是根//if (ppNode == nullptr) //也可以使用这个判断条件{_root = subL;_root->_parent = nullptr;}else // parent是左或右子树{// parent是左就把subL链接到左,是右就链接到右if (parent == ppNode->_left){ppNode->_left = subL;}else{ppNode->_right = subL;}subL->_parent = ppNode;// 同样不要忘记更新subL的父指针}// 最后更新parent和subL的平衡因子parent->_bf = subL->_bf = 0;
}
左单旋实现及情况考虑可参考右单旋
h == 0的情况:
h == 1:
void RotateL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;// 60的左变成30的右parent->_right = subRL;// 更新subRL的父指针if (subRL){subRL->_parent = parent;}Node* ppNode = parent->_parent;// 30变成60的左subR->_left = parent;parent->_parent = subR;//if (_root == parent)if (ppNode == nullptr){_root = subR;_root->_parent = nullptr;}else{if (parent == ppNode->_left){ppNode->_left = subR;}else{ppNode->_right = subR;}subR->_parent = ppNode;}parent->_bf = subR->_bf = 0;
}
像下图的情况简单的单旋已经不能正确调整平衡,需要使用双旋(不同轴点的单旋):
a/d是高度为 h 的AVL树
b/c是高度为 h - 1 的AVL树
h == 0:
h == 1:
看图写代码:
void RotateLR(Node* parent)
{Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;// 对30左单旋,对90右单旋RotateL(parent->_left);RotateR(parent);// 最后更新平衡因子if (bf == 0) // subLR自己是新增{parent->_bf = 0;subL->_bf = 0;subLR->_bf = 0;}else if (bf == -1) // 在subLR的左新增{parent->_bf = 1;subL->_bf = 0;subLR->_bf = 0;}else if (bf == 1) // 在subLR的右新增{parent->_bf = 0;subL->_bf = -1;subLR->_bf = 0;}else{assert(false);// 异常处理}
}
h == 0:
h == 1:
void RotateRL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;RotateR(parent->_right);RotateL(parent);if (bf == 0){parent->_bf = 0;subR->_bf = 0;subRL->_bf = 0;}else if (bf == -1){parent->_bf = 0;subR->_bf = 1;subRL->_bf = 0;}else if (bf == 1){parent->_bf = -1;subR->_bf = 0;subRL->_bf = 0;}else{assert(false);}
}
总结:
假如以 parent 为根的子树不平衡,即 parent 的平衡因子为 2 或者 -2 ,分以下情况考虑:
旋转完成后,原 parent 为根的子树高度降低,已经平衡,不需要再向上更新。
insert 时平衡因子检测的整体代码:
while (parent) // parent为空,也就更新到根停止
{// 更新平衡因子// 新增在左,parent->bf--;// 新增在右,parent->bf++;if (cur == parent->_left){parent->_bf--;}else{parent->_bf++;}//检测if (parent->_bf == 0){break;// 无需继续更新}else if (parent->_bf == 1 || parent->_bf == -1){// 插入前parent的平衡因子是0,插入后parent的平衡因为为1 或者 - 1 ,说明以parent为根的二叉树// 的高度增加了一层,因此需要继续向上调整cur = parent;parent = parent->_parent;}else if (parent->_bf == 2 || parent->_bf == -2){// parent的平衡因子为-2/2,违反了AVL树的平衡性// 需要对以 parent 为根的树进行 旋转 处理if (parent->_bf == -2 && cur->_bf == -1) // 右单旋{RotateR(parent);}else if (parent->_bf == 2 && cur->_bf == 1) // 左单旋{RotateL(parent);}else if (parent->_bf == -2 && cur->_bf == 1) // 左右双旋{RotateLR(parent);}else if (parent->_bf == 2 && cur->_bf == -1) // 右左双旋{RotateRL(parent);}else{assert(false);// 平衡因子异常}break; // 旋转完成后,原 parent 为根的子树高度降低,已经平衡,不需要再向上更新}else{assert(false); // 平衡因子异常:绝对值大于2}
}
AVL树的整体代码:AVL树的简单模拟实现
AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:
int Height(Node* root)
{if (root == nullptr)return 0;int lh = Height(root->_left);int rh = Height(root->_right);return lh > rh ? lh + 1 : rh + 1;
}bool IsBalance()
{return IsBalance(_root);
}bool IsBalance(Node* root)
{if (root == nullptr){return true;}int leftHeight = Height(root->_left);int rightHeight = Height(root->_right);if (rightHeight - leftHeight != root->_bf){std::cout << root->_kv.first << " 平衡因子异常" << std::endl;return false;}return abs(rightHeight - leftHeight) < 2&& IsBalance(root->_left)&& IsBalance(root->_right);
}
AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即log2(N)log_2 (N)log2(N)。
但是如果要对AVL树做一些结构修改的操 作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。