有限差法(Finite Difference)求梯度和Hessian Matrix(海森矩阵)的python实现
创始人
2024-05-26 03:47:28
0

数学参考

有限差方法求导,Finite Difference Approximations of Derivatives,是数值计算中常用的求导方法。数学上也比较简单易用。本文主要针对的是向量值函数,也就是f(x):Rn→Rf(x):\mathbb{R^n}\rightarrow \mathbb{R}f(x):Rn→R当然,普通的标量值函数是向量值函数的一种特例。

本文采用的数学参考是:有限差方法
参考的主要是Central Difference Approximations小节中的Second-order derivatives based on gradient calls的那个公式。

代码

准备

本文的方法只需要numpy包,几乎可以说不需要任何包,而且不受到什么限制,只要满足输入格式就能求取,比所谓autogradnumdifftools好用的多。

梯度函数

为了求Hessian矩阵,本文采用的方法需要首先求取梯度。首先需要有一个函数func,示例的func如下:

def func(x, **args):x_0 = x[0]x_1 = x[1]return x_0**2 + x_1**2

该函数是一个R2→R\mathbb{R^2}\rightarrow \mathbb{R}R2→R的函数。将该函数输入进下面的函数grad_func_generator中之后,就可以返回梯度函数,支持在任何一点求取梯度。这里输入x应该是一个列表,是各个维度的输入。例如x = [0,0].

def grad_func_generator(func, eps = 0.00001):def gradient_func(point):n_var = len(point)gradient = np.zeros(n_var, np.float32)# nth gradientfor i in range(n_var):# 初始化左点和右点,同时不改变原来的展开点left_point = point.copy()right_point = point.copy()left_point[i] = point[i] - epsright_point[i] = point[i] + epsgradient[i] = (func(right_point) - func(left_point))/(2*eps)return gradientreturn gradient_func

求取梯度:

grad_f = grad_func_generator(func) # 生成梯度函数
grad_f([1,1])

可以得到结果:

array([2., 2.], dtype=float32)

Hessian矩阵

利用已经实现的梯度函数,可以实现Hessian矩阵。

def hessian(func, point = [0, 0], eps = 0.00001):"""Hessian matrix of func at expendung point."""n_var = len(point)def grad_func_generator(func):def gradient_func(point):gradient = np.zeros(n_var, np.float32)# nth gradientfor i in range(n_var):# 初始化左点和右点,同时不改变原来的展开点left_point = point.copy()right_point = point.copy()left_point[i] = point[i] - epsright_point[i] = point[i] + epsgradient[i] = (func(right_point) - func(left_point))/(2*eps)return gradientreturn gradient_funcgrad_func = grad_func_generator(func)hessian_matrix = np.zeros((n_var, n_var), np.float32)for i in range(n_var):for j in range(n_var):# 第一项left_point_j = point.copy()right_point_j = point.copy()right_point_j[j] = point[j] + epsleft_point_j[j] = point[j] - epsdiff_i = (grad_func(right_point_j)[i] - grad_func(left_point_j)[i])/(4*eps)# 第二项left_point_i = point.copy()right_point_i = point.copy()right_point_i[i] = point[i] + epsleft_point_i[i] = point[i] - epsdiff_j = (grad_func(right_point_i)[j] - grad_func(left_point_i)[j])/(4*eps)hessian_matrix[i, j] = diff_i + diff_jreturn hessian_matrix

可以通过输入函数func和求取二阶导数的点x,就可以输出该点处的Hessian矩阵。

hessian(func, [0,0])

得到结果

array([[2., 0.],[0., 2.]], dtype=float32)

如果和numdifftools的结果对照,可以发现一样。但是numdifftools非常难用,总是报错。我们的程序只需要numpy包就能实现,非常方便好用。

相关内容

热门资讯

中证A500ETF摩根(560... 8月22日,截止午间收盘,中证A500ETF摩根(560530)涨1.19%,报1.106元,成交额...
A500ETF易方达(1593... 8月22日,截止午间收盘,A500ETF易方达(159361)涨1.28%,报1.104元,成交额1...
何小鹏斥资约2.5亿港元增持小... 每经记者|孙磊    每经编辑|裴健如 8月21日晚间,小鹏汽车发布公告称,公司联...
中证500ETF基金(1593... 8月22日,截止午间收盘,中证500ETF基金(159337)涨0.94%,报1.509元,成交额2...
中证A500ETF华安(159... 8月22日,截止午间收盘,中证A500ETF华安(159359)涨1.15%,报1.139元,成交额...
科创AIETF(588790)... 8月22日,截止午间收盘,科创AIETF(588790)涨4.83%,报0.760元,成交额6.98...
创业板50ETF嘉实(1593... 8月22日,截止午间收盘,创业板50ETF嘉实(159373)涨2.61%,报1.296元,成交额1...
港股异动丨航空股大幅走低 中国... 港股航空股大幅下跌,其中,中国国航跌近7%表现最弱,中国东方航空跌近5%,中国南方航空跌超3%,美兰...
电网设备ETF(159326)... 8月22日,截止午间收盘,电网设备ETF(159326)跌0.25%,报1.198元,成交额409....
红利ETF国企(530880)... 8月22日,截止午间收盘,红利ETF国企(530880)跌0.67%,报1.034元,成交额29.0...